MICHIGAN STATE UNIVERSITY Project Plan Presentation Automotive Software Integration In Virtual 3D

The Capstone Experience

Team Elektrobit

Fierro, Alan Austin, Joshua Kania, Logan Dutton, Brandon Wojan, Tommy Le, Duy

Department of Computer Science and Engineering Michigan State University

Spring 2024

From Students... ...to Professionals

Project Sponsor Overview

- Specializes in advanced automotive software
- Maintains a global presence, powering over 5 billion devices on over 600 million vehicles
- A leader in automotive software with over 35 years of serving the industry
- German company, spans three continents and eleven countries

Project Functional Specifications

- Expensive to physically build vehicle hardware components
- Simulate vehicle hardware inputs (GPS, Acceleration, Velocity and Obstacles) in a UI vehicle dashboard
- Save money for Elektrobit and time for testing engineers

Project Design Specifications

- GPS Data
 - Simulate a compass
- Acceleration Data
 - Simulate an accelerometer
- Velocity Data
 - Simulate a speedometer
- Obstacle Detection
 - Simulate a vehicle obstacle detection sensor
- User Interface Development
 - Design and develop a new UI tab to display the processed data as a vehicle dashboard

Screen Mockup: Full Display

Screen Mockup: Speedometer/G-force

Example: Velocity and Acceleration Variation

64

MPH

0.7

G

The Capstone Experience

Team Elektrobit Project Plan Presentation

Screen Mockup: Proximity Sensors

Screen Mockup: Compass

Compass Direction Change (from GPS sensor)

Project Technical Specifications

- CARLA simulates sensor hardware
 - Python API to configure sensors and export data
 - Runs on device with capable GPU
- CARLA Mock service to generate random sensor data
- Adaptive AUTOSAR containers run with Docker
 - Provides AUTOSAR Runtime for Adaptive Applications (ARA)
 - Runs on Ubuntu server
- Adaptive AUTOSAR Server container processes raw sensor data from CARLA or CARLA Mock
- Adaptive AUTOSAR Interface container receives processed data and displays it using React.js

Project System Architecture

Project System Components

- Hardware Platforms
 - Capstone Lab Server (for Adaptive AUTOSAR containers)
 - Machine with a dedicated graphics card with at least 6GB VRAM for CARLA
- Software Platforms / Technologies
 - AUTOSAR Runtime for Adaptive Applications (ARA)
 - Docker
 - Ubuntu, Windows
 - Python, C++
 - React.js, JavaScript/JSX, HTML, CSS

Project Risks

- Risk 1
 - Description: CARLA might potentially run slow if we have a lot of cameras
 - Mitigation: Lower rendering resolution, or disable rendering completely
- Risk 2
 - Description: CARLA's code base is large and understanding it can be challenging
 - Mitigation: Team members will research CARLA's codebase independently and together
- Risk 3
 - Description: We are unsure about our client's expectations for the UI design.
 - Mitigation: Clarify with our client about real-world usage of the app

Questions?

