

#### Project Plan Presentation

Volkswagen Shopping App with Augmented Reality

#### The Capstone Experience

#### Team Volkswagen

Bryce Cooperkawa
Nahom Ghebredngl
Rikito Takai
Swathi Thippireddy
Richard Zhou



Department of Computer Science and Engineering
Michigan State University

#### **Project Sponsor Overview**

- Volkswagen Group of America, Inc. U.S. subsidiary of Volkswagen Group
  - One of the world's top automakers Europe's largest











VW CREDIT, INC.

- Driven by innovation across various automotive technologies
- Pioneering sustainable solutions, including electric mobility

## **Project Functional Specifications**

- AR App to streamline the car buying process
  - Help users envision how the car will look at home
  - Customization options tailored to liking
  - Fewer trips to dealerships and showrooms
- User experience, intuitive placement of vehicle model
  - Camera direction, gesture controls
  - Accurate scale
- Realistic models that fit in environment
  - Photo capture to share with friends and family

#### Project Design Specifications

- Model Selection
  - Users choose between various models of cars to display and customize
- Preview/Anchor Placement
  - Ensure the user places car model in an appropriate space
- Car View
  - Options to interact with the virtual car
- Accessory Selection
  - Options to add accessories
- Capture and Share
  - Captures the current view and has options to share and save the image



## Screen Mockup: Model Selection



# Screen Mockup: Placing Anchor





# Screen Mockup: Car Placed



## Screen Mockup: Menu





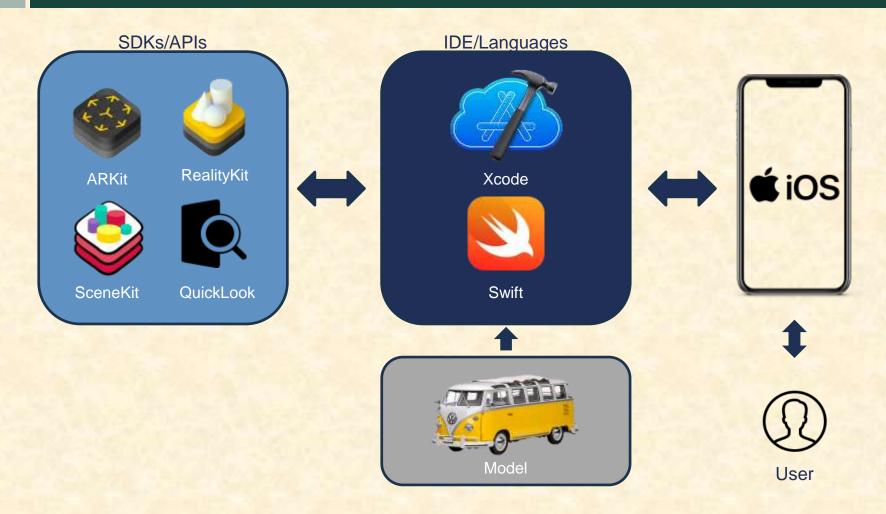
## Screen Mockup: Accessories



## Screen Mockup: Capture and Share






## **Project Technical Specifications**

#### Xcode

- Provides developers with a platform to write comprehensive code that can be distributed to capable iOS devices
- Combines the tools described below in a powerful IDE
- ARKit
  - Detect and track the real world through a device's camera
  - Allows for the use of Apple's Augmented Reality features
- RealityKit
  - Adds key details to AR scenes that allow for seamless integration of virtual objects in the real world
  - Allows developers to harness ARKit's power through the creation of AR Views
- SceneKit
  - Powerful API and rendering engine used to build, customize, and animate 3D models
  - Create scenes with embedded sound and where models have different accessories
- QuickLook
  - Leveraged by other frameworks to display AR elements with improved quality
  - Spatial audio will give the user a more immersive experience

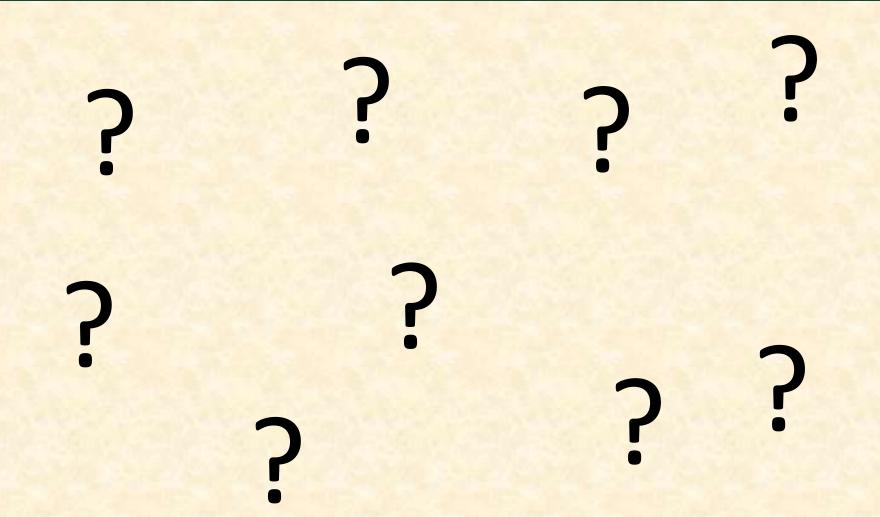


## Project System Architecture



#### **Project System Components**

- Hardware Platforms
  - iOS 13.4 or higher
- Software Platforms / Technologies
  - Xcode & Swift
    - The industry standard for developing for iOS
  - ARKit & RealityKit
    - ARKit: foundational framework for AR development on iOS
    - RealityKit: higher-level framework that builds on ARKit and allows developers to quickly and easily create Augmented Reality
  - SceneKit
    - 3D graphics framework provided by Apple. It is designed for building 3D interactive scenes
  - Quicklook
    - Offers several features to help display AR scenes realistically




#### Project Risks

- 3D Models for cars and accessories
  - Availability of 3D models may pose a challenge. Low-quality models would not be suitable
  - Mitigation: Placeholder models for prototypes, Leverage QuickLook features to improve models' display quality
- Loading customization options
  - Selecting accessories and loading updated models may slow performance
  - Mitigation: Load all models on startup
- Object projection in different environments
  - Placement of an object can be hard to determine due to limited space, slanted inclines, and even lighting conditions
  - Mitigation: Build prototypes based on established examples
- Adjusting car audio based on vehicle specifications and location
  - Changing the sound based on user distance from vehicle, and vehicle type could require acoustics knowledge and complex calculations
  - Mitigation: Spatial Audio with QuickLook and sounds embedded in models through SceneKit



## Questions?

