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Statement of Problem 
 

The Union Pacific Wireless Network Project is designed to provide Union Pacific 
Rail Roads a viable wireless alternative to the current wired data network that exists 
on board the locomotives of their fleet. As networks need to be changed, individual 
systems upgraded and new systems added the locomotives must be pulled out of 
service to have the maintenance performed. This down time costs money in 
manpower and service time lost by the locomotive. By creating a wireless alternative 
to the current wired network we aim to provide a solution capable of reducing the 
down time of the locomotive, the number of man hours required to perform systems 
upgrades and additions while maintaining, if not improving the security and reliability 
of the network. 
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Team Introduction 
 
Tyler Tom (tomtyler@msu.eudu)  – Project Manager//Systems Development 
Bill Vassas (vassaswi@msu.edu)  – Webmaster//Systems Development 
Chien Se (sechien@msu.edu)   – Systems Development 
David Wilson (wilso417@msu.edu)  – Systems Development 
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Solution Proposal 
 

Creating a wireless solution that the current wired network can be moved to 
involves many challenges.  First off is finding acceptable hardware, since the network 
is on-board a locomotive that already has many wireless RF devices communicating 
on 160 MHz, 220MHz, 450MHz, 896MHz, 924MHz, 2.4GHz, 5.6GHz, and 6.5GHz 
as well as a high noise floor from various other electro magnetic fields emanating 
from various device’s requires us to look at many different technologies, this is 
discussed later on in the papers discussion on wireless technologies and vendors. 
  
 Second, the network topology as it is laid out in its wired format requires that 
multiple connections be made from each device to multiple other devices.  This 
leaves us with two possible solutions.  One, we create wireless links for every 
existing wired connection or two, we create a single wireless interface for each device 
that said device will be known as on the wired network.  We propose that the latter of 
the two solutions is the more proper way to form a wireless network. 
 
 Pursuing option number two for the topology of the wireless network, we are 
proposing the creation of a wireless interface device that has multiple wired data 
connections to it and will be invisible to the device connected to it.  These 
connections will allow the interface to be plugged directly to the devices as they are 
now without having to alter their current software configuration.  The wireless 
interface will be able to address each wired connection to it directly via an internal 
address table; much like a network address table (NAT) found in common consumer 
grade routers and switches.  Each device will be aware of other devices NAT via a 
protocol that is referred to as the Town Crier Protocol.   
 

. 
Figure 1. Device on network attached to its wireless interface 
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Solution Proposal 
As we previously stated each device will be aware of other devices NAT in a 

global NAT table; this information will be stored on the wireless interface in a routing 
table (table 1), also as we’ve previously stated how this data is synced is yet TBD.  In 
order to carry out the NAT scheme we must be able to uniquely identify not only the 
radio to which the device is connected, but the connection on the device that we are 
trying to communicate to.  This will be done by chunking the data portion of the 
transmission frames into a bitcode portion and a data portion (figure 2).  While this 
will take away from the available bandwidth, it should take no more than a few bytes 
(at the moment we are proposing that a 4 bit bitcode be used to allow us to be able to 
uniquely identify 16 connections from any given device). 

 
 
 
 
 

 
 
 
 
 

 
 

 Due to personnel constraints we will be constructing the prototype interfaces 
out of PC’s (either laptops or desktops) and implementing the wireless interface 
software in Linux.  By using Linux as our development platform we hope that the 
software may be ported to special hardware to enable the fabrication of small special 
purpose pieces of hardware that will be the final wireless network interface product. 

MAC Wireless Interface 1 BITCODE – connection 1 
BITCODE – connection 2 
BITCODE – connection 3 

MAC Wireless Interface 2 BITCODE – connection 1 
BITCODE – connection 2 
BITCODE – connection 3 
BITCODE – connection 4 

MAC Wireless Interface 3 BITCODE – connection 1 
BITCODE – connection 2 

Table 1. Example global NAT table  
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Protocol Overview 
 The protocol developed replaces multiple wire connections to multiple 
machines with a single wireless interface device (hence forth referred to as a WID) 
that utilizes peer to peer data transfers.  The WID maintains knowledge about all 
other WID’s on the network and what connections those WID’s have. 
  
 In order to properly forward data from one device specific connection to 
another device specific connection the WID’s utilize a rule table that is setup local to 
the machine that tells it where data from a specific connection should be sent to.  The 
destination WID sends this data out on the connection specified by the source WID.  
This whole process should seem invisible to the source device. 
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Protocol in Depth 
Data Transmission 

There are two challenges to replacing multiple data links and mediums with 
one data link and medium, one is developing a protocol capable of packaging 
multiple types of data and transmitting them over a single medium, in our case RF. 

 
The protocol takes in data, of any type up to 1500 bytes at a time via a struct 

called data1500.  This struct contains information about where the data came from 
(i.e. from what connection), where it is going to, and how much data is to actually 
hold in the struct as well as the actual data (up to 1500 bytes). 

 
Once the struct has been built it must be formatted for sending.  Since most 

RF modems can stream data size should not normally be a problem, however we do 
not want any one radio to be able to monopolize another radio thus essentially 
denying a connection to others trying to talk, so instead we package the data into 100 
byte chunks. 

 
The first 4 bytes of the chunk are used for administrative purposes, such as the 

connection that it is to be sent out on (the far destination connection, referred hence 
forth as the DA_DBC), which chunk it is if it is part of a fragmented message, the 
final chunk ID, the message ID and the original message length.  These five things 
allow the protocol to reassemble the original sent message from multiple chunks of 
data and send it out on the proper data connection. 

 
Figure 2. Frame Layout 

 

Destination Bit Code Used to direct where the data will be sent out on 
the device that received the packet 

Chunk ID Allows linear identification of fragmented packet. 
Last Chunk ID Allows us to know how many fragments to look 

for in a fragmented message, if this is set to 0 and 
Chunk ID is set to 0 we know there has been no 
fragmenting. 

Message ID Gives us a unique identifier for a message in case 
multiple sources are transmitting at the same time 
and frames are received in a non contiguous 
manner 

Original Message Size Tells us how many bytes that we need to build 
into the packet that we are sending out 

 



 9

Protocol in Depth 
Wireless Device Addressing 

 
The other challenge, that of the data links brings about the issue of how to 

address the various hardwire connections that were replaced by the virtual links we 
are creating. 

 
That is done in two parts.  The first is the Destination Lookup Table 

(henceforth referred to as the DLT), this is essentially a NAT that contains 
information about every wireless device on the network, including what connections 
it has running into it.  That information must be setup locally on each Wireless 
Interface Device (henceforth referred to as a WID).   

 
In order for all WID’s to have the same knowledge, a master node is used 

known as the Town Crier.  The Town Crier maintains and distributes the Global DLT.  
This special version of a DLT is almost identical to the DLT that a WID would have, 
except the Town Crier also keeps state information about each WID on the network.  
Each WID transmits its local information to the Town Crier in a heart beat message 
sent out once every 5 minutes; the Town Crier then adds an entry to the Global DLT 
if no entry for that WID exists and marks the time that it was received and then 
broadcasts the DLT out to each device on the network.  If there is already an entry for 
that WID the Town Crier compares the data it received to the data it has on file and if 
they are different it updates the data on file and then broadcasts the Global DLT out 
to everyone notifying them of the change, if there has been no change between what 
is on file and what was received it simply updates the time it was last heard from.  If a 
WID is not heard from in 7 minutes the Town Crier sends a heart beat request to the 
WID in question, if it does not receive a response it removes the WID from the 
Global DLT and broadcasts the update. 

 
As well as the DLT, which lets a device know what devices are out there, a 

WID must know what local connection gets forwarded to what far connection.  This 
is accomplished via the rule table, which like the local information, must be setup on 
each WID as it is most likely specific to that WID.  The rule table does not simply 
consist of  DA_DBC’s, instead it consists of character tags representing the DBC 
from which the data came (SA_DBC), the destination address of the far wireless 
device (DA) and the destination bitcode of the far device (DA_DBC).  The character 
tags are then used to lookup the SA_DBC, DA, and DA_DBC from the DLT so that 
rules can be built that can be used to fill in these crucial pieces of information 
required to properly send out any data other than a broadcast. 
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Implementation Overview 
  

 Implementing the protocol proved to be no less of a feat than designing it.   
Union Pacific originally requested that we develop this project to work on a Rabbit 
Micro Control board, this however was not possible due to limitations of the 
hardware further complicated by personnel constraints, however in an effort to make 
translating the code onto a microcontroller easier all code was written in C and on 
Linux.  C was chosen as it allowed for the fastest running code without getting down 
to a low level language like assembly or VHDL, Linux was chosen as the 
development platform as there are many devices running embedded versions of 
Linux, thus we hope that the code can perhaps be smoothly transitioned in the future.   
 

On top of code and platform considerations the protocol called for our 
implementation to be invisible to the end point devices.  This meant that all 
connections to the devices from the WID needed to be capable of capturing data not 
meant for it and also be able to emulate the original sender when sending data to the 
end point device. 
 
 Once the data is captured, a thread hooking into the WID internals is called 
that allows the WID to process the data received from the end point device.  
Processing includes chunking the data into 96 byte segments to allow it to be sent out 
in the protocol formatted frame.  Once the data is chunked the frame is finished by a 
framing unit that looks up the DA and DA_DBC of where it is to be sent and then 
placed into an out queue. 
 
 A transmit thread then sends the data out to the proper recipient.  Once on the 
other side the data is placed into a received queue and then sorted out to the proper 
connection queue where it is reassembled if it has been fragmented and then sent out 
on the connection its initial form. 
 
 The WID’s utilize three non-code files to help with their tasks; these files are 
DLT.conf, RULES.conf and LOCAL.conf.  DLT.conf is built by the Town Crier and 
then transmitted to all WID’s on the network.  It contains information about every 
device on the network and is used by RULES.conf in order to build the rule sets used 
to direct data transmission.  RULES.conf contains information regarding where data 
should be sent from what connection, this is essentially where the link that we are 
replacing is specified.  LOCAL.conf is used to name the WID device, it also contains 
the RF modem device address which it probes the radio for as well as all information 
about connections to the WID from the end point device, this information is 
transmitted to the Town Crier via a heartbeat thread once every 5 minutes with the 
first transmission happening immediately after the WID is finished setting itself up.  
The character tags for the device name and connection names in LOCAL.conf are 
important to the protocol, since a device will most likely know well before the DLT is 
received what connections send data to what devices and more importantly, what 
connections on those devices data needs to be sent to, rules are set in character tags, 
these tags are then looked up in the DLT to form the rule object which is used to 
direct data from a connection to a specific connection on a specific device.. 
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Implementation in Depth 
Configuration Files 

 
There are three configuration files that are used by the WID’s in order to carry 

out the protocol.  These files are DLT.conf; LOCAL.conf, and RULES.conf, example 
files are located in the CONF_FILES directory of the product code. 

 
DLT.CONF 
 
  The DLT.conf file is generated by the Town Crier and then transmitted to 

every WID that it believes to be on the network at that time.  The file contains 
information about every device on the network and each connection that those 
devices have, this information is compiled via the information sent to the Town Crier 
via the heartbeat threads of all WID’s.  It is in a specific format that is as follows, 
whitespace does not matter so long as there is some in between each field. 

 
#DA tag DBC tag 
0x0000 HELLOWORLD 0x0000 CONNA 
0x0000 HELLOWORLD 0x0001 CONNB 
0x0000 HELLOWORLD 0x0002 CONNC 
0x0000 HELLOWORLD 0x0003 CONND 

Figure 3. DLT format 
 
The first field is the device address of the RF modem connected to that 

particular device WID, and is made up of four hex characters.  The next second field 
is the character tag describing that particular device, this is used in RULES.conf.  The 
third field is the destination bit code (henceforth referred to as the DBC) of each 
connection specified on the device, the protocol allows for up to 15 (0x000F is 
reserved for the Town Crier) connections to be specified, thus only the least 
significant byte of the four specified in the DLT should be set to identify the 
connection.  The fourth and final field is the connection tag; this again is used to label 
the connection and is also used in RULES.conf.  Thus it is important to know at least 
what a device is labeled and what the connections on the device are labeled. 

 
As we can see the DLT excerpt in figure 3 specifies a device 

“HELLOWORLD” with DA 0x0000 and four connections 0x0000 – 0x0003 labeled 
CONNA – CONND. 
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Implementation in Depth 
LOCAL.CONF 

 
The LOCAL.conf file is setup by the user on the WID.  This file contains 

information regarding the local machine such as the device name (also referred to as 
the device tag), the device address (which is actually probed from the radio and thus 
does not need to be set in the file, but is written back out to the file for future 
reference) and finally connection information. 

 
DEVICE_NAME: ARC 
DEVICE_ADDRESS: 0x68dd 
CONNECTIONS: 
0x0000 CONNA eth0 0 
0x0001 CONNB eth1 0 
0x0002 CONNC ttyS0 9600 
0x0003 CONND ttyS1 38400 
0x000f CONNF ttyS2 115200 

Figure4. LOCAL format 
 
The DEVICE_NAME: DEVICE_ADDRESS: and CONNECTIONS: pre-tags 

must remain in place.  Connection information must also start on the line below the 
CONNECTION pre-tag and consists of four fields.  The first field is the connections 
DBC; this is used for addressing data to a specific destination connection from the 
WID and also for properly routing received data to that connection.  The second field 
is the DBC tag and must be referenced in RULES.conf to specify where data from 
that connection is forwarded to.  The third field specifies what connector that 
connection actually is and is referenced in a Linux format as that is what the WID’s 
are currently built on.  The fourth and final field is the baud rate of the connection, 
this data is not needed for Ethernet connections and thus a 0 is put in its place all baud 
rates 0 – 115200 with the exception of 76800 are valid baud rates, this should be set 
to the speed of the device connected to it however.  Like DLT.conf spacing does not 
matter so long as it exists between fields. 

 
We see an example LOCAL.conf in figure 4.  This example describes a device 

referred to as ARC with a device address of 0x68dd and 5 connections, A-D and F.  
Connections A and B are Ethernet connections as we can see from field 3 and are 
located on eth0 and eth1 respectively, since they are Ethernet connections baud rate is 
unimportant to them and thus is set to 0.  Connections C, D and F are serial 
connections on serial ports ttyS0 - ttyS2, they have baud rates of 9600, 38400 and 
115200 respectively. 
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Implementation in Depth 
RULES.conf 

 
The RULES.conf file also must be set on the WID.  It consists of rules 

describing how data from which DBC on the local WID should be sent to which far 
WID and which connection on that WID it should be sent out.  Since it is most likely 
that this information will be known well in advance of the first DLT ever being 
received it behooves us to set these rules up in advance and fill in information about 
them once we receive a new DLT. 

 
Rules are set in a specific format, DBC-TAG -> DA-TAG_DBC-TAG.  The 

tags are then used to lookup information in the DBC.  All tags must be the same as 
tags in the LOCAL.conf files that they are originally posted in, thus it is necessary to 
know these tags in advance of writing the RULES.conf file. 

 
CONNA -> Foo_CONN1 
CONNA -> GPS_CONN0 
CONNB -> Foo_CONN1 
CONNC -> ARC_CONN3 

Figure5. RULE format 
 
An example RULES.conf is provided in figure 5.  The example shows us four 

rules specifying the data forwarding rules for 3 connections, CONNA, CONNB and 
CONNC.  We see that CONNA and CONNB both send data to device Foo’s 
connection CONN1.  Also we see that CONNA sends data to device GPS’s 
connection CONN0.  CONNA is an example of how one would specify point to multi 
point connections.  Unfortunately specifying a point to multi point connection means 
that all data will be sent from the source connection to the multiple endpoint 
connections; at this time it is not possible to direct specific data packet types to 
specific connections.   
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Implementation in Depth 
Train Device to Wireless Interface Device 

  
 Data is captured from the train device via two types of transmission mediums, 
Ethernet and Serial.  The data is captured via two threads running functions designed 
specifically to grab any data sent out on the line, thus turning the WID into an un-
intended listener and invisible to the end point device connected to it. 
 

• DynamicReadThreadCreate (dynamicReadThreadCreate) 
 

The purpose of this function is to dynamically create the listen threads so each 
interface device can communicate with its train device’s connections, being either 
Ethernet or Serial connections. The function parses the localInfo struct myInfo, which 
knows what connections are present on the interface’s train device. The listen threads 
are passed a connectionArgs struct containing the DBC for the physical train 
connection and the character string name of the connection for setting up sockets 
bound to specific hardware on the interface. 

 
• Listen Serial Thread (comReceive) 

 
A serial thread is spawned for each serial connection on the Interface device.  

This thread runs continuously checking the serial port for new data coming from a 
train device.  The serial port is accessed through the POSIX library.  The serial port is 
set to the appropriate baud rate, which is defined in the LOCAL.conf configuration 
file.   The serial port is then configured to local mode, a character size of 8 data bits, 
no parity checking, raw input and output mode, and a force to wait on at least one 
character.  The serial port was configured in this way so the Interface Device would 
be as transparent as possible and not change any of the data coming from a train 
device.  After the serial port is setup, the thread continuously loops-checking for new 
data.  When data is received it is put into a buffer of 1500 bytes.  When there is no 
more room in the buffer for new data, the buffer is sent out and cleared.  Also, if the 
serial thread has not received data for 50,000 microseconds and there is data in the 
buffer, the buffer is sent out and cleared.  The buffer gets sent to the CTX thread. 
 

• Listen Ethernet Thread (ethReceive) 
 

Like the Listen Serial Thread, the Listen Ethernet Thread opens a socket for 
communication from the interface device to the train device. The main function is 
void *startserver( void* arg ), which is called from file dynamicReadThreadCreate.c. 
The argument to this function is the struct connectionArgs defined in protocol.h, 
which contains the DBC for the thread, and the connection “type”, which is a string 
literal or name of the specific Ethernet hardware. For example, “eth0” would be 
passed as the type. A RAW socket using the AF family, set to promiscuous mode, and 
set for all protocols for Ethernet using ETH_P_ALL, defined in linux/if_ether.h. 
Other Linux structs used are socketaddr_ll to store transmitted information and ifreq 
struct to store hardware information.  
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Implementation in Depth 
Wireless Interface Device to Train Device 

 
Data is sent from the WID to the Train Device via a single function that 

switches on the type of connection that the data is addressed to. 
 

• Write Data (writeData) 
 

This function receives the data1500 struct and determines what type of train 
connection this data is bound for. It looks at the da_dbc field in the data1500 struct 
and enters either the write data Ethernet function or the write data serial function. 
This function is linear, no more threading is involved when called. 

 
• Write Data Serial Function (comSend) 

 
The write data serial function is used to write data to a connection on the 

Interface device, which is then sent to a train device.  This function is called each 
time a frame of data in the central queue has a destination bit code for a serial 
connection.  The serial port is accessed through the POSIX library.  The serial port is 
set to the appropriate baud rate, which is defined in the LOCAL.conf configuration 
file.   The serial port is then configured to local mode, a character size of 8 data bits, 
no parity checking, raw input and output mode, and a force to wait on at least one 
character.  The serial port was configured in this way so the Interface Device would 
be as transparent as possible and not change any of the data being sent to a train 
device.  After the serial port is setup, the function writes a frame of data to the serial 
port. 

 
The main functionality is within a loop where the function receives Ethernet 

packets from any location, stores the packet inside a data1500 struct, then creates a 
thread for the function ctx() giving data1500 as the argument. The function loops 
back, waiting for more packets from the train device. 

 
• Write Data Ethernet Function (ethSend) 

 
The write data Ethernet function is used to write data to a connection on the 

Interface device, which is then sent to a train device.  This function is called each 
time a frame of data in the central queue has a destination bit code for a serial 
connection.  A RAW socket is opened using the AF family, set to promiscuous mode, 
and set for all protocols for Ethernet using ETH_P_ALL, defined in linux/if_ether.h. 
Other Linux structs used are socketaddr_ll to store transmitted information and ifreq 
struct to store hardware information. The function then sends the data passed into it, 
then closes the socket. 
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Implementation in Depth 
Wireless Interface Device to Wireless Interface Device 
 

The communications between WID’s is where a significant portion of the 
protocol takes place.  It is in this phase that the original data is packed into the 
Town Crier protocol and transferred over the air to the far WID.  Once there it is 
reassembled into its original format and set out over the connector specified in the 
Town Crier packet. 

 
• Data Queues 

  
 Data is moved about the WID via Circular FIFO queues, aka cfifo’s.  These 
queues allow us to put protocol frame structs into them and are then assured that the 
frames will be removed in the order they were received.  18 cfifo’s are utilized in the 
WID code, 1 for each possible connection to the WID( 0 - 14) 1 for the Town Crier 
(15 ),  for the Rx Thread and for the Tx Thread (16 and 17 respectively). 
 

• Circular FIFO Queue (cfifo) 
 

For data queues in our application we used a circular first-in-first-out queue.  
This data structure was used instead of a dynamic queue to minimize memory usage.  
There is a main outgoing circular queue, which a central thread pulls data from to 
send to the wireless radio.  This is done so data is not lost while the thread is in the 
process of sending data to the wireless radio.  Each connection on the Interface 
Device has its own circular queue.  There is a thread for each connection, which pulls 
data from its own circular queue and sends to the connection.  This is done so data is 
not lost while a thread is in the process of sending data to the connection.  The queue 
is done in a first-in-first-out method so the first device to receive a message will 
receive it first, and the first device to send a message will send it first. 
 

The circular queue has a set allocation, which can be changed at the 
FIFOSIZE definition in the protocol header file.  An array is used to keep the queued 
data.  The array is defined in a struct with other variables used for management.  
Head is used to point to the head of queue.  Size is used to keep the total size of the 
queue.  Fifo_num is used to tell which global semaphore the queue is to act on.  The 
semaphore is used so reading and writing from the queue is done exclusively.   
 
 

  
Figure6 An empty CFIFO 
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Implementation in Depth 
Wireless Interface Device to Wireless Interface Device 
 

Figure 6 shows the circular buffer.  The numbers are the indexes into the 
array.  The fifo structure is acted on by functions to keep the circularity of the buffer.  
A setup_fifo function is used to initialize the fifo by setting the head and size to zero 
and associating a global semaphore with the fifo.  A read_remove function is used to 
pull the first data frame off the fifo.  This function will return a one on success and a 
zero if there is no data in the buffer.  The function will also increment the head to the 
next position in the buffer.  If the head is at the end of the array the read function will 
increment the head to the beginning of the array.  The check_read function will read 
data from the head of the fifo but will not increment the head, so the data will not be 
“pulled” from the fifo.  The check_size function will return the size of the buffer.  
The write_fifo function will write data to the fifo, putting it at the end of the queue.  
Write_fifo will return a one on success and a zero if the queue is full.  The write_fifo 
will also increment the size.  The last function is lookup_frame which will return a 
specific frame of data based on a number given.  If lookup_frame is given a 5 it will 
return the 5th frame of data in the queue.  Lookup_frame returns a zero if the data 
cannot be found.   
 
                      

 
Figure7 Data in CFIFO 

 
 
 

          
Figure8 CFIFO after reading and writing data 
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Implementation in Depth 
Hook into WID Internals (Tx) 

 
In order to allow the code that interfaces with the endpoint devices to hook 

into the WID and return to processing data from the interface (i.e. listening for data) a 
hook function that runs as a thread was created. 

 
• CTX (central transmit mediator) 

   
 The CTX thread function takes as a parameter a data1500 pointer which 
contains the data received by the listening threads and acts as a mediator to insure it 
gets processed, thus allowing the listen threads to listen without worrying about the 
data getting processed.  It then sends the data to the chunking function which returns 
a buffer of data chunks.  The thread then sends each chunk to the framing function 
which places the data into the Tx FIFO.  At this point the data is done being 
processed and the memory of the original data1500 pointer is freed. 
 

• Chunker 
 
 The chunker takes the 1500 bytes of the data1500 struct and chunks them by 
placing it 96 bytes at a time into chunk structs consisting of 100 bytes starting at the 
fifth byte as the first four bytes are reserved for protocol usage.  The chunker then 
sets a message ID generated by rand() % 16 guaranteeing us that the resultant 
message ID is no larger than 4 bits and will fit into the packet format.  As well as the 
message ID the chunker sets the Chunk ID and Final ChunkID. 
 

• Framer 
 

 The framer takes in a single data chunk at a time, looks for the rules 
associated with the source DBC and generates frames with the proper DA_DBC set in 
the packet.  The generated frames are then placed into the CONN[17] queue which is 
a CFIFO queue specifically reserved for outgoing data (i.e TxQueue). 
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Implementation in Depth 
Hook out of WID Internals (Rx) 

 
  In order to get received data out of the WID and back out to the end point 
device the data must be first processed and then sent out using a hook out of the 
internals that was previously mentioned, the write data function. 
 

• Sorter Thread 
 
 The sorter thread checks the receive queue (CONN[16] is reserved for 
incoming data) for data and if data is there,  moves the data from the receive queue, to 
the proper connection queue where it will be processed by the CRX thread that is 
responsible for that connection  
 

• CRX Create 
 
 CRX Create is called at the beginning of the WID’s operation.  It dynamically 
creates a number of CRX threads that will be responsible for processing data on the 
specific connection queues that are in use.  This is done based off of information from 
LOCAL.conf. 
 

• CRX Thread 
 
 The CRX Thread is started via the CRX Create function.  It takes a parameter 
allowing it to identify which connector it is working on.  The thread runs forever and 
continually checks the associated cfifo for data.  If there is a data frame in the cfifo 
then CRX grabs it and checks to see if it has already started building a message that 
has the same message ID as the frame it just received, if it has it builds the data onto 
the message that is in construction, if it is not part of an already existing message the 
thread will construct a new buildup struct and keep the message until it has been 
completed.  A CRX thread can build up to 16 individual messages at a time.  When 
the message has finished its reassembly (we know this by the number of bytes in the 
original message, and the number of bytes of our reassembled message) it is sent out 
to the train device over the connector specified by the queue via the already 
mentioned write data function.  The buildup struct is then wiped and a new message 
can be built in it. 
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Implementation in Depth 
Node Management 
 The Town Crier 

 
The Town Crier is a network management node that becomes necessary if you 

want the network to intelligently be aware of other devices on the network and 
changes that take place to the network.  All nodes on the network transmit their local 
information to the town crier via the Heart Beat Thread that is to be discussed later.  
The Town Crier receives this data and checks the Global DLT that it maintains, if the 
device information is already in the DLT and the information is exactly the same as 
the previous set it received, the Town Crier updates the last heard from time.  If the 
information is new or different from what is on file in the DLT the Town Crier 
updates the information and sends out the updated DLT to all nodes on the network 
so that they can update their information as well.  

  

The Town Crier also continually checks the last heard times of the devices the 
in DLT against the current time to see what devices may have timed out.  If a device 
has not sent a heartbeat message in 7 minutes the Town Crier sends a heartbeat 
request to the device, if it does not respond with a heart beat message within 1 minute 
it is considered down and removed from the DLT.  The DLT is then broadcasted to 
all nodes on the network so that they can make appropriate updates as well. 

  

The Town Crier is not necessary for WID usage, however you must configure 
a DLT.conf file by hand if you want to not use the Town Crier. 

 

 WID Heart Beat Thread 
   

 In order to maintain state information about the network the WID’s have a 
thread constantly running, much like the many other threads that constantly run.  This 
thread has one specific purpose in that on a  set interval it sends its myInfo data (the 
localInfo struct built up when LOCAL.conf is parsed) to the Town Crier.  This is 
known as the heartbeat message and is sent once every 5 minutes. 
 
WID Heart Beat Request Response 
 
 In order to respond properly to a heart beat request the WID has a function 
which when it sees a heart beat request, replies o the Town Crier with its local info.  
The WID heart beat request response is tied into the normal receive data flow.
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RF Modems 

 
Up until now all code we’ve discussed is radio independent.  This means that 

so long as functions that do what the following functions do are written to interact 
with another transport medium that any transport medium could theoretically be used. 

 

There are two files that contain information specific to the radio, these files 
are radio.h and radio.c.  With the .h file specifying functions used in the .c file.   

 
 Configure Modem Connection (In & Out) 
   

 There are two versions of the Configure Modem Connection function, one 
configures a connection for reading data, the other for writing data, and both must be 
called on the same device connector in order to open up full duplex mode on that 
connector.  These functions are use to set the two file descriptors used to 
communicate with the radios, RADIO_FD_IN and RADIO_FD_OUT.  The 
Connections are opened in a raw mode so that all data transmitted and received is 
taken as is and not formatted depending on the bytes sent.  All connections are 
opened at a baud rate of 115.2Kbps. 
 
Modem Command 
  
 Modem Command is a function used to send AT commands to the modems.  
These commands are specific to the modems we chose but other modems would 
surely have a similar feature, thus the Modem Command function takes a string of 
characters to send, the file descriptor on which to send them, and a buffer to capture 
the response.  This is the function that we use to probe the radios in order to retrieve 
their DA.  All AT commands have responses to them. 
 
Get SADA 
  
 Get SADA utilizes modem command and sends out the proper AT commands 
to retrieve the DA of the radio attached to the WID.  These commands are 
+++ ( enter command mode ) 
ATMY (probe for my DA ) 
 ATCN ( leave command mode ) 
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RF Modems 
 
Send Data 
 

Send data is a generic write function that utilizes the write command, it takes 
in a buffer to send, the file descriptor over which to do it and the number of bytes to 
send out. 

  
 Send Data Thread 

  
 The send data thread is began at startup and runs forever like many other 
threads.  It checks the CONN 17 buffer which is the buffer reserved for frames that 
are to be transmitted.  If there is data in the queue (using a function of cfifo to check 
the queue for the number of frames currently in it) the send data thread will read a 
frame from the queue and frame it into the modems own packet that will be sent out.  
This packet is 109 bytes long, and consists of an 8 byte header and a 1 byte checksum 
following our data.  Once the packet has been framed up for the modem it sends the 
frame out over the air. 
 

 Receive Data Thread 
 

The receive data thread is also began at startup and also runs forever.  This 
thread reads in 109 bytes at a time from the modem and then places the 100 bytes of 
our frame into the receive queue ( CONN 16 is reserved for this purpose ).  The 
thread also verifies that the packet received is indeed a receive status packet by 
checking the message after 4 bytes have been received, if it is not the read is reset. 

 

 NOTE: 
For more information about the radios used please read the beta 

documentation from MaxStream included with this manual. 
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Hardware Overview 
Various pieces of hardware have been necessary for the completion of this 

project.  We have had to construct a test network consisting of 3 nodes, each node 
however consists of a train device and a wireless interface device, thus we required 6 
computers, plus one more to function as the Town Crier.  All machines are various 
Pentium 4s with varying amounts of ram and all are running the Linux distribution, 
Fedora Core 4. 

 
On top of the PC’s that we’ve had to setup to allow emulation of a network in 

the lab, this project would not have been possible without the RF modems.  We 
looked at many different technologies, 802.11, Bluetooth, UWB, and a plethora of RF 
modems in the 900 MHz and 2.4 GHz range before eventually settling on an RF 
modem manufactured by MaxStream.  We chose to use MaxStreams 9xTend 900 
MHz RF modem as it had a feature set unbeatable by other manufacturers. 

 

The 9xTend is capable of an over the air throughput of 115.2Kbps and had a 
developers kit that placed the modems onto an interface board that allowed 4 
computer scientists to develop for it without having to have intimate knowledge about 
how to send data to and from a device through anything but C and a little serial 
programming. 

On top of the 9xTends over the air throughput it also had a built in AES 
encryption module eliminating the need for software encryption which would have 
been computationally expensive and rather slow.  While a radio could receive the 
encrypted data without knowing the key it was encrypted with, the data would just be 
tossed as it would appear as gibberish, thus only radios that have the same encryption 
key would be able to communicate. 

As well as the encryption key acting as a way to keep certain devices from 
communicating with one another the radios will not talk to radios that do not have the 
same network ID set, thus you can again limit which radios talk to which radios. 

On top of all these other features MaxStream agreed to give us a beta 
firmware for the radios that allowed us to use an API to format radio frames by hand 
and send them out to the radio.  This allowed us to format frames to send to 
individual radios without having to change who the radio was set to talk to in its 
firmware, which would involve computationally costly AT commands. 

The beta firmware however has some things in it that are disabled as their 
functionality has not yet been implemented.  The most worrisome of these features is 
the encryption.  In the beta firmware the device encryption is not able to be used,  we 
have been assured by MaxStream that in the final release this issue will be resolved 
and hardware encryption will once again be enabled. 
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Project Results and Conclusion 
Protocol Results 

The problem presented to us by Union Pacific was both interesting and 
difficult, create a protocol that can be used to transport two types of transportation 
mediums across a wireless medium and also develop a schema for the network.  Our 
solution to this problem was equally interesting. 

Our first step was to tackle the problem of data transportation.  Thus we 
developed the wrapping protocol which is able to wrap both serial and Ethernet traffic 
and move it across a wireless link, and in fact can most likely move any type of data 
across the wireless link.  The software implementation of this protocol has 3 parts, 
end point device to WID, WID to WID, and finally WID to end point device.  In the 
end point WID interaction there are hooks that can be used to move any data across 
the WID link.  A hook into the WID where data is to be passed in can be used by any 
programmer to use the WID link to move their data to the far WID, and a backwards 
hook into the WID that is used to retrieve the data from the far WID.  These hooks 
are what allow anything to be sent across the WID link.  We developed two modules 
that utilize these hooks that transport both serial and Ethernet data.  The serial module 
receives and sends data in a raw mode so as to not interfere with the data in anyway.  
The Ethernet module does much the same as the serial module but is a bit more 
complicated in that it acts as an unintended listener and receives all packets on the 
line tied to it despite whom they may be addressed for, and on the backside it spoofs 
the packet out exactly how it was received. 

Since there was a possibility that the radios we chose to use for this project 
would not be deployable by Union Pacific the code interfacing with the radio was 
kept separate than the rest of the WID code.  If a different RF modem, or any other 
wireless or wired transport medium were decided upon a programmer would only 
have to rewrite the radio.c and radio.h files and write functions named the same as 
those in radio.c and radio.h that have the same functionality as the originals to 
interface with the new transport medium. 

The next problem was how to manage the WID nodes properly in a network.  
This presented us with a few different options where we eventually decided to utilize 
a management node protocol that we developed called Town Crier.  Town Crier 
utilizes a single node that does not interface with any end point devices.  This node 
maintains information about all WID’s on the network via a heartbeat message 
containing information about the device that each WID transmits to a set RF device 
address 0x7FFF, while this is RF modem specific, it could be easily changed if a 
different wireless medium were decided upon.  If a heartbeat message contains new 
information the global list is updated and sent out to everyone on that list.  If it’s old 
information the Town Crier updates the timestamp on the device.  If the difference 
between the timestamp and the current time is 7 minutes or greater the Town Crier 
will time the device out and update the list. 
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Project Results and Conclusion 
RF Modems 

For the wireless component to this project we examined various technologies 
from the IEEE approved 802.11 and Bluetooth to UWB and many RF Modems in 
between.  We needed to find a wireless technology and device that had certain 
features. 

• Individually addressable 

• Transmission Control (i.e. ACK//NAK) 

• Capable actual RF throughput 

802.11 technologies were ruled out by Union Pacific as they wanted to explore 
other solutions.  Bluetooth was ruled out due to its rather low transmit power, this 
perhaps could have been augmented with an amplifier but without an electrical or RF 
engineer on the team we decided against this.  UWB ruled itself out by the fact that 
we could only find one company that manufactured a UWB radio modem.  And of the 
RF modems one stood out above the rest, MaxStream’s 900 MHz 9xTend RF 
modem.  This radio was uniquely addressable and had RF level transmission control 
all at an actual data throughput rate of 115.2 KBps, as an added bonus it had hardware 
level encryption using AES. 

The radios came in a development kit that had them attached to a microcontroller 
which  allowed us to interface with them over a serial line.  Thus we were now 
limited to the maximum output speed of the radios, allegedly 115.2 Kbps. 

In order to make our implementation of the Town Crier protocol as efficient as 
possible we opted to use a beta firmware (2015) from MaxStream that has not yet 
been publicly released.  This firmware allows us to set the radios into an API mode 
that allows us to create entire RF frames and send them to the radio for immediate 
transmission versus having to send commands to the modem to have it switch settings 
such as destination address.  However this firmware, being a beta firmware, has 
broken some of the features that the 9xTend normally has though we have only 
verified one, encryption.  We know that the beta firmware has the AES encryption 
disabled, MaxStream says this will be enabled at full release.  While a software 
implementation of AES could be used to encrypt data before it hits the radio that 
would not be the proper way to create an embedded device as you would want 
separate hardware to run the encryption, thus the radio implementation would 
definitely be better than a software implementation. 
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Project Results and Conclusion 
RF Transmission Issues 

Though  the data sheet for the 9xTend claims to have a 115.2 Kbps throughput, in 
practice we have found that we are only able to attain a fraction of that speed, 
approximately 2.5 Kbps.  While we are not sure why this is we believe it to be a 
setting on the modem that we have not yet identified.  Thus the link is only capable of 
handling data at that speed.  Any faster than that and data is lost.  This is due to the 
RF Modem itself.  The 9xTends have two buffers, a DI and a DO that are used for 
data being transmitted and received.  These buffers are 2.1K a piece, once the 2.1K is 
full though any data that is sent to the radio is dropped.  Thus the absolute data limit 
that the protocol can handle is dictated by the speed of the wireless link. 
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If this equation is not observed then data will be lost due to the way the RF 
modems operate.  A solution to this problem could be to buffer the data in software to 
insure that all data is transmitted, however if the data coming into the WID is coming 
in at a rate faster than the WID can transmit the data the buffer will overflow and data 
would be lost unless there are sufficient breaks in data transmission so that the buffer 
could be sent.  This solution would rely upon a bad assumption that there will be 
breaks in the data flow of sufficient length to allow the buffer to clear out.  The 
optimal solution is to replace the link with a technology that has a larger data 
throughput such as UWB or any of the 802.11 technologies. 

Despite the transmission speed issues the 9xTends are capable of transmitting at 1 
watt and thus have excellent range.  Interference testing through multiple walls (most 
likely cement w/rebar) revealed that we were able to maintain a link to the radios, 
additional interference tests were run with the radios on separate floors (though near 
windows), 1 floor differences did not present a challenge, however 2 floors of 
difference did and while the radios were still able to transfer data, more data was lost 
than was acceptable. Distance testing within the Michigan State University 
Engineering Building we were able to attain a distance of 500 feet and still maintain a 
reliable link. 
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Program Compilation and Running 

  
 In order to compile the WID run ‘make WID’ from the main code directory. 
  
 Before running the WID make sure to setup the LOCAL.conf and RULES.conf as 
 specified earlier in this document. 
 
 Then to start the wireless interface device type ‘./WID’. 
 
 In order to compile the Town Crier run ‘make TC’ from the main code directory. 
 
 Then to start the wireless interface device type ‘./TC’. 
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Appendix A: High Level Transmit and Receive Design  
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Appendix B: Transmit Thread Data Flow Design 
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Appendix C: Receive Thread Data Flow Design 
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Appendix D:  Town Crier Wrapper Protocol API, Packet Format 
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