
1
MSUFCU

Team MSUFCU
Michigan State University

Achieve It Financial Education System
Project Plan
Spring 2019

MSUFCU Contacts
Samantha Amburgey

April Clobes
Austin Drouare
Collin Lochinski

Ben Maxim
Liam Petraska

Val Torrey

Team MSUFCU

Ben St. John
Michael Jajou

Rachel Hamilton
Benjamin Carroll

2
MSUFCU

Contents
Executive Summary 3

Functional Specifications 4

Design Specifications 5

Overview 5

Child View vs. Parent View 5

Mobile Application Designs 5

Login & Home Screen 6

Tasks 7

Savings Goals 8

Loans 9

Learning Modules 10

Web Application Designs 11

End-User Web Application 11

Internal Web Application 12

Technical Specifications 14

System Architecture 14

System Components 15

Cloud Platform 15

Web Applications 16

Mobile Applications 16

Risks 17

Content of Appropriate Complexity for Age Groups 17

Modularization of Learning Activities 17

Configuring Authentication into Google Assistant 17

Testing plan 18

Schedule 18

3
MSUFCU

Executive Summary

With a member base numbering over 280,000 spanning the Michigan State University

and Oakland University communities, MSUFCU is the largest university-based credit union in

the world. MSUFCU offers a range of products and services including a variety of account types

(savings, checking, IRA, etc.) as well as loan and insurance offerings. A leader in its market,

MSUFCU recognizes the value of innovation and investing in its technology to provide superior

products to members.

MSUFCU has an in-house software development team, numbering about 35 employees,

that produces custom software. This provides the advantage of being able to build software to

exactly address issues or wants of the company rather than trying to get vendor products to

work with existing systems. MSUFCU seeks to apply these resources it has developed to provide

more holistic financial services that enable members to maintain a healthy financial life.

Towards this goal, team MSUFCU is working with MSUFCU to produce the preliminary

implementation of “Achieve It”; a financial education tool that enables children to learn about

finances in an environment controlled by their guardian. This software creates a system in

which users have access to information and experiences in a safe environment that is more

engaging, rewarding, and meaningful than traditional methods of youth financial education.

Such education includes but is not limited to understanding the value of saving, the value of

money, accountability, loans and interest, good credit practices, and financial responsibility.

4
MSUFCU

Functional Specifications
 It cannot be assumed that the average consumer has had comprehensive personal

finance education. Being aware of this, MSUFCU wishes to provide a highly accessible education

experience platform targeted at children between the ages of 3 and 13. The goal is to provide

educational material as well as low-risk, but otherwise realistic, financial experiences (e.g.

account management, saving, loan management, working for money). “Achieve It” is a unified

system of applications usable on smartphones, computers, and home assistants that aims to

achieve this goal.

This solution can be broken up into three primary user demographics and their

corresponding applications:

 First, part of the solution is directed at parents. Parent accounts can monitor and

interact with linked child accounts. Parent accounts have the capability of awarding money via

MSUFCU account transfers as well as providing loans with optional interest. Tasks and learning

modules can be managed and assigned by the parent with the option of a monetary award

upon completion. The parent can approve that the youth has completed the tasks to

satisfaction before the transfer is made. Parents have access to a web app and mobile app to

oversee and manage the above features; a Google Assistant interaction is also available to the

parent for simple status updates on individual child progress.

The second user type are children between the ages of 3 and 13 that have an existing

MSUFCU youth account. Youth accounts cannot exist independently of a parent account.

Moreover, youth accounts cannot be accessed without the linked parent account’s approval

which can be given on a case by case basis or carte blanche. The youth also have a simple pin

for logging into their account. Learning modules are provided by MSUFCU at age levels to

expose children to content appropriate for their age. The value of saving is the primary financial

concept that MSUFCU would like to teach. Youth can set savings goals and can designate part of

their bank balance toward these goals. Youth can request loans from their parents through the

app with an interest rate set by the parents. These features aim to show the results that come

from saving and borrowing to youth.

Third, the MSUFCU staff wishes to view statistical data online measuring the usage of

the various apps such as tasks completed and goals met. The data is meant to provide analytics

on specific features and content to help MSUFCU refine the solution over time. The data

collected for analytics is entirely anonymous and contains no personally identifiable

information.

5
MSUFCU

Design Specifications

Overview
 The MSUFCU “Achieve It” system contains a number of applications on a range of

platforms. Therefore, it is important to keep a consistent user interface across all platforms for

frictionless transitions across a user’s devices. There will be a single web application for the

MSUFCU administration to monitor statistics and manage high-level features and content of the

application; the designs for this backend administration portal will be fairly bare-bones and

focus on functionality over experience. There will be a web application, iOS, and Android

application that will contain both “child” and “parent” sections of the application containing

slightly different functionality with similar interfaces. Finally, there will be a Google Assistant

application which will contain no front-end user interface. With the exemption of the Credit

Union admin dashboard, the user experience will be designed to provide intuitive navigation

and interaction with the app. It is incredibly important for the app design to be simplistic due to

the large age range that will be interacting with it.

Child View vs. Parent View
This application is essentially built for two types of users. The parent user and the child

user. They both serve very different roles, but they come together in providing financial

education in a productive, fun, and new way. All designs of the application will remain similar

for all users, with minor adjustments. Listed below will be specific design decisions made to

differentiate controls and functionality between the parent and child. All designs shown in this

document are the base designs that both the parent and child interfaces will inherit from.

6
MSUFCU

Mobile Application Designs

Login Screens

Child vs. Parent:

On figure 1, the login page for the child, there will be a simple image associated with

each child. We are going to add a very simple pin authentication for the child so that they can

only access their own account. On the child account home screen, there will be a simplistic

navigation panel to guide the child to their various options within the app.

On figure 2, the login page for the parent, they will have also had a pin authentication.

The designs for the parent’s home screen will be significantly different because they will have a

dashboard that gives them access to manage each individual child’s account, and the parent

will also have a section to save tasks globally for all children.

The difference between the child login and the parent login is really what happens after

the authentication process. After a child successfully logs in, they only have access to their data

such as goals, tasks, loans, etc. The parent login acts as the admin for the children where the

parent can add or monitor the children’s data.

Figure 1 Figure 2: Parent login screen Figure 1: Youth login screen

7
MSUFCU

Tasks

Child vs. Parent:

Figure 3, the design for the child view will only display simple task information and

provide a way for the child to mark a task as complete. This child view will also provide a short

summary of all earnable money through their current tasks.

Figure 4, the design for the parent view shows the parent the tasks currently assigned to

a specific child as well as the tasks the child has marked as complete. Viewing of these two lists

is determined by buttons near the top of the screen. Each of the task cards can expand to show

more detail about the task. On the list of tasks marked as completed the cards will include a

button for the parent to verify task completion and initiate the transfer of the reward to the

child’s account

The design of the task views for both parent and child are very similar. The key

differences lie in their unique functionalities. The child view is fixed on one child account

whereas the parent view can cycle through different child accounts through use of the drop-

down selector in the top right. The parent has the capability of adding tasks and approving

tasks, but the child can only mark assigned tasks as completed making them viewable to the

parent for verification.

Figure 3: Youth tasks view Figure 4: Parent tasks view

8
MSUFCU

Savings Goals

Child vs. Parent:

Figure 5, the child view for the savings goals component will be a simple display of all

current savings goals, which can be expanded for further detail, and a button to create a new

savings goal. The expanded view for saving goals will show more details about a specific goal

including a timeline of the savings and will include buttons to deposit money to the goal, edit,

or delete it.

Figure 6, the parent view for the savings goals component shows lists of active and

completed goals where the currently viewed list can be toggled by the control near the top.

There are cards to represent the goals. These cards can be expanded for a summary of the goal.

The parent can edit, delete, and add funds to goals through the cards. The parent can also make

a goal for the child using the button in the bottom right. The parent view can stitch between

specific children using the drop-down selector in the top right of the screen.

The parent view is very similar to the child view, except that the parent has much more

control over the goals including the ability to edit and delete goals. The parent is also able to

monitor the goals for all of the children under the parent account, where the child view only

allows the logged in child to view their specific savings goal. The parent view will also give the

user the ability to add funds to the savings goal which will help the child reach their goal faster

without the money coming out of the child’s account.

Figure 5: Youth goals view Figure 6: Parent goals view

9
MSUFCU

Loans

Child vs. Parent:

Figure 7, the design for the child view loans shows the child lists of pending loans and

approved loans. Viewing of these lists can be toggled using the control near the top of the

screen. Each of the loans is represented as a card where a brief summary is viewable. On active

loans the child will also have the option to make a payment on the loan. Loans administered to

a child can have an interest rate that is applied once at the time the loan is dispensed. The child

has the ability to make a request to the parent for a new loan. This request can be made by use

of the button in the bottom right of the screen.

Figure 8, the design for the parent view shows the loan requests from a specific child

awaiting the approval of the parent account and the current outstanding loans taken out by a

specific child. The view of these lists can be toggled by the control near the top of the screen.

The loans are represented by cards that can be expanded to show a summary. In the bottom

right there is a button which allows the parent to create and administer a new loan to the

specified child. The child is selected using the drop-down selector in the top right of the screen.

The design of the loans views for both parent and child are very similar. The key

differences lie in their unique functionalities. The child view is fixed on one child account

whereas the parent view can cycle through different child accounts through use of the drop-

down selector in the top right. The parent has the capability of adding loans and approving loan

requests whereas the child can make loan requests and work on loan repayment.

Figure 7: Youth loans view
Figure 8: Parent loans view

10
MSUFCU

Learning Modules

Child vs. Parent:

Figure 9, the child view for the learning module component will have a simple display of

all available learning modules, and an overview of the progress across all modules. These

modules can be viewed as lists of cards that are toggleable from the control near the top of the

screen. The cards show a summary of the module and an option to start the module if it has not

been done before. Upon completion the module is moved to the list for completed modules.

Figure 10, the parent view for the learning module component will show the assigned

and unassigned modules as cards. The viewing of these lists can be toggled by the control near

the top of the screen. The parent can expend cards in the unassigned list to access the option to

assign the module to the child currently selected in the drop-down selector found at the top

right of the screen.

As with other components, the parent and child views for modules are visually similar

but differ in capabilities. The parent can only view and assign modules where the child can view

the modules and start them.

Figure 9: Youth learning view
Figure 10: Parent learning view

11
MSUFCU

Web Application Designs

End-User Web Application

Figure 11, the end-user web application designs will be very similar to their mobile

application counterparts. There will only be cosmetic and minor interaction changes

implemented on the web application to take into consideration the user’s larger screen size,

keyboard, and mouse/trackpad. Below is a sample design for the task management system

within the web application. While there will be a “child” and “parent” view for this end of the

application, they are still currently being implemented and the only difference will be in

functionality, not necessarily design components.

Figure 11: Example of web application page, Parent tasks view

12
MSUFCU

Internal Web Application

Figure 12: Internal web dashboard statistics page

13
MSUFCU

The internal web application will be the only user interface for MSUFCU administration

to monitor and interact with the “Achieve It” system. Based on instruction and advice from

MSUFCU faculty, the designs for this end of the system will come from a premade template for

data analytics.

Figure12 is the data analytics page for the MSUFCU internal application. This shows a

number of data points about application usage. We are currently at a stage where we are

waiting for MSUFCU to request any more data points they would like to monitor, otherwise this

page is complete.

Figure13 is the learning module CMS hub. This is the central page where the internal

admin will be able to create new learning modules for the entire system, add and edit the

actual learning content with a rich text editor, and assign the modules to specific age groups.

This is a very intuitive and simple view that is designed for maximum efficiency in creating new

content for the system.

Figure 13: Internal web dashboard learning module creation page

14
MSUFCU

Technical Specifications

System Architecture

 “Achieve It” consists of native applications for iOS and Android, two web applications

built on top of the ReactJS framework, and Google Voice Assistant interactions with DialogFlow.

One of the web applications will allow the MSUFCU team to administer the “Achieve It”

application. Firebase Hosting provides hosting for web applications. Cloud Functions for

Firebase allows the integration of Firebase Features and is shared by all devices. Data and

application security are handled by Firebase Security. Data is stored in Cloud Firestore.

Figure 14: System architecture diagram

15
MSUFCU

System Components

Cloud Platform

Firebase

 Firebase is a web and mobile application development platform built on top of Google

Cloud. Our system will be leveraging a number of Firebase services to create real-time data-

driven applications.

Firebase Cloud Functions

 Cloud Functions is an event-driven serverless compute platform that is hosted and

managed on Google Cloud. All user-end components will directly interact with Firebase Cloud

Functions to securely receive, send, and process data. Google Cloud handles the operational

infrastructure of the application.

Firebase Security

 Firebase Security Rules are node-based and managed by a single JSON object. Security

Rules provide access control and data validation. Firebase Authentication working with Security

Rules allows the team to build user-based and role-based access systems, keeping the users’

data secure. All Firebase Security Rules are fully customizable for the system’s specific needs.

Cloud Firestore

 Cloud Firestore is a flexible, scalable NoSQL cloud database for mobile, web, and server

development. Firestore keeps data in-sync across client apps and offers offline support for

mobile and web. Firestore integrates with other Firebase and Google Cloud Platform products,

such as Cloud Functions.

Firebase Hosting

 Firebase Hosting provides infrastructure, features, and tooling tailored to deploying and

managing websites and apps. Files are deployed from local directories to the Hosting server

using Firebase CLI. Cloud Functions can be used to serve dynamic content and host

microservices on sites. All content is served over an SSL connection from the closest edge

server on Firebase’s global CDN.

DialogFlow

 DialogFlow is a human to computer interaction development platform that is specifically

designed for natural language conversations across a number of platforms. DialogFlow will be

used to interact with the Google Assistant component of the “Achieve It” system.

16
MSUFCU

Web Applications

React

 React is a JavaScript library for building user interfaces. React will update and render

components when application data changes. Components are encapsulated and manage their

own state. Data is easily passed through the application because component logic is written in

JavaScript instead of templates.

Mobile Applications

Swift

 Swift is a powerful and intuitive programming language for iOS. Specifically, our team

will be using the most stable version of Swift: currently Swift 5.1.13

iOS SDK

 The iOS SDK contains a set that grants developers access to various functions and

services of iOS devices. The SDK also contains an iPhone simulator for testing applications.

Developers are able to write iOS apps using Swift by combining the iOS SDK with Xcode.

Firebase SDK

 Cloud Firestore supports SDKs for Android, iOS, and Web. Realtime updates and offline

data persistence are supported by mobile and web SDKs. An Admin SDK is used to initialize

access to Cloud Firestore and other services from a single SDK. The Firebase Admin SDKs

support Cloud Firestore access in Java, Python, Node.js, and Go.

Kotlin

 Kotlin is a programming language that is fully supported in Android Studio and

compatible with the Android build system.

Android SDK

 The Android SDK and API allow the development of software for devices running

Android. The target build is to cover users across Android 9.0(Pie) to Android 4.4(KitKat) which

should cover all MSUFCU Android members.

17
MSUFCU

Risks

Content of Appropriate Complexity for Age Groups
- Difficulty: Medium

- Description: The targeted age range for the child side of the application is from ages 3-

13. The challenge here is that a 3-year-old is very different from a 13-year-old.

Therefore, there must be different forms of content and layout structures for each of

these age groups. Moreover, in terms of learning modules, it will be difficult to define

what is complex enough for the targeted age group but at the same time not so complex

to the point where it becomes impossible. We are not really sure what would define a

user-friendly interface for a 3-year-old all the way through a 13-year-old.

- Mitigation: Adopt MSUFCU’s own distinctions between ages and follow their design and

content decisions

Modularization of Learning Activities
- Difficulty: Medium

- Description: To keep the system easily extendable a generic format for learning

activities needs to be established. That is to say, some sort of standard is needed to

allow for the easy addition of new modules without needing to alter the source of the

“Achieve It” system.

- Mitigation: From looking at other systems that host semi-complex dynamic content the

popular solution seems to be restricting the format of the content.

Configuring Authentication into Google Assistant
- Difficulty: Low

- Description: The Google Assistant portion of the application is said to not have a

graphical user interface. While the features of the assistant app are pretty minimal, it

does require authentication in order to read and deliver the user data associated with

the account. The question is how do we implement authentication without a user

interface. Can authentication be implemented via voice or will a whole other application

needs to be created just so users can log in and have access to the google assistant? At

the same time, this needs to be done while maintaining the security of the account

information.

- Mitigation: See if there is already a system for achieving this. Perhaps use a web or

mobile app to authenticate for voice.

18
MSUFCU

Testing plan
 Testing for each platform will be handled in parallel to development by each member in

a “test what you write” sort of policy. By nature of the project and our implementation with

Firebase this system is UI heavy with minimal business logic so testing will be done via usage,

for the most part. Voice assistant testing is easier to test through use. For field testing, the team

at MSUFCU has generously offered to have their children test the app for feedback.

Schedule
Week 1: 1/5 - 1/11

- Initial meeting with the group (Establish weekly meetings)

- First meeting with clients (Establish weekly meetings)

- Assign roles

Week 2: 1/12 - 1/18

- First triage meeting (Weekly)

- Status update (All)

- Present status update (Ben S & Michael)

Week 3: 1/19 - 1/25

- Hello world (All)

- Establish architecture (Ben S & Rachel)

- The initial batch of UI designs (Ben S)

- Create the base layer for Firebase Cloud Functions and deploy to Google Cloud (Ben S)

- Project plan (All)

Week 4: 1/26 - 2/1

- Finish Wireframing/basic designs for the mobile and web application (Ben S)

- Get the web application up and running and connected to Firebase (Ben S & Rachel)

- Create most screens in Android app with unlimited navigation “white box” (Ben C)

- Get login screen implemented and perform basic authentication for iOS (Michael)

- Present project plan (All) unknown if this week or next

Week 5: 2/2 - 2/8

- Present project plan (All) unknown if this week or last

- Have all completed designs for the web and mobile apps, and export all assets for

developers (Ben S)

- Finish up any lingering screens in Android (Ben C)

- Implement login functionality for all users on Android (Ben C)

19
MSUFCU

- Implement login functionality for all users for Web App (Rachel)

- Finish login functionality and implement the Tab bar controller and task view for child

side for iOS (Michael)

- Begin outlining basic code and conversations for Google Assistant in DialogFlow (Ben S)

-

Week 6: 2/9 - 2/15

- Status report (All)

- Present status report (undecided)

- Work with web and mobile developers to ensure Cloud Functions are providing accurate

and helpful data upon request for all possible requests (Ben S)

- Continue adding functions to the web dashboard (Ben S)

- Add task and learning module functionality on Android parent (Ben C)

- Begin Add Child functionality for Parent View in Web App (Rachel)

- Finish and complete layout for loans view (Michael)

- Alpha Presentation (All)

Week 7: 2/16 - 2/22

- Present Alpha (All) unknown if this week or next

- Begin connecting the pre-made HTML and CSS in the MSUFCU data analytics template

with real-time data from Google Firestore (Ben S)

- Start coding out Firebase Cloud Functions for one of the major Google Assistant intents

(Ben S)

- Continue adding, debugging, and improving all Cloud Functions (Ben S)

- Add learning loan functionality on Android parent(Ben C)

- Finish Add Child for Web App (Rachel)

- Add learning module functionality for iOS & Implement Loan Functionality (Michael)

Week 8: 2/23 - 2/29

- Present Alpha (All) unknown if this week or last

- Adding in a WYSIWYG Editor for images and other rich text in the learning modules (Ben

S)

- Add goal functionality on Android parent and extend to child (Ben C)

- Begin implementing Add Task and Add Goal in Parent View for Web App (Rachel)

- Start implementing Parent View Authentication (Michael)

Week 9: 3/1 - 3/7

- Spring Break

- Enjoy a much needed time off

Week 10: 3/8 - 3/14

20
MSUFCU

- Status update (All)

- Present status update (undecided)

- Start to finish up with cloud functions and all debugging for web app (Ben S)

- Start testing mobile applications on the 4 major features and compile a list of all

outstanding bugs (Ben S)

- Polish off the statistics end of the MSUFCU analytics dashboard (Ben)

- Finish functionality not shared by parent and child(Ben C)

- Finish Parent View for Web App (Rachel)

- Finish up Parent View such as Tasks, Loans, & Learning Modules (Michael)

Week 11: 3/15 - 3/21

- Continued development work on Google Cloud Assistant and DialogFlow (Ben S)

- Polish UI and ensure consistency across mobile platforms(Ben C)

- Work with Rachel on the client facing web application (Ben S)

- Implement Child View for Web App (Rachel)

- Create settings page to switch between accounts and log out

Week 12: 3/22 - 3/28

- Status update (All)

- Present status update (undecided)

- Continued development work on Google Cloud Assistant and DialogFlow (Ben S)

- Finalize Google Assistant and begin running all tests (Ben S)

- Cleanup, debugging, and user testing for Android (Ben C)

- Cleanup, debugging, and user testing for Web Apps (Rachel)

- Finalize, debug, and test iOS App (Michael)

Week 13: 3/29 - 4/4

- Present Beta (All) unknown if this week or next

-

Week 14: 4/5 - 4/11

- Present Beta (All) unknown if this week or last

Week 15: 4/12 - 4/18

- Status update (All) x2

- Present status update (undecided) x2

- Project video

Week 16: 4/19 - 4/25

- Project video

21
MSUFCU

- Design day setup

Week 17: 4/26 - 5/2

- Design day

- Project videos

22
MSUFCU

