

1

TITLE:

User Guide for the Graphical Model Editing Framework

SOURCE:
 Networks and Infrastructure Research Lab

AUTHORS:
 Name Organization

 Kabe VanderBaan Networks and Infrastructure Research Lab, Illinois

 Scott Brodie

Jerrid Matthews

April Noren

Aman Rastogi

MSU Capstone

DATE:
December 11, 2006

Version 2.0

Revision History

Version
Date Change Description

1.0 11/27/2006 Rough outline of User Specifications.

1.1 11/29/2006 Added information to the Implementation of Diagram Editor

section

1.2 12/03/06 Removed code examples in Implementing a Diagram Editor

since it was not needed.

1.3 12/07/06 Added information to the handler area

1.4 12/08/06 Added installation steps.

2.0 12/11/06 Final Release Version

2

1 EXECUTIVE SUMMARY... 3

2 INSTALLATION .. 4

2.1 Eclipse Environment.. 4

2.1.1 Java 1.5.06 ... 4

2.1.2 Eclipse 3.2 ... 4

2.1.3 Eclipse Configuration .. 4

2.1.4 Install Graphical Editing Framework (GEF) ... 4

2.2 GMEF Plug-in Installation .. 4

3 IMPLEMENTING A CUSTOM DIAGRAM EDITOR .. 7

3.1 Diagram Editor .. 7

3.2 Model Handler Factory .. 7

3.3 Model Handler ... 7

3.4 Figure Handler ... 7

3.5 Figure ... 8

3.6 Connection Handler ... 8

3.7 Connection ... 9

3.8 Drop Handler ... 9

4 DIAGRAM FILE FORMAT ...10

5 EDITOR FEATURE OUTLINE ..11

5.1 Drag and Drop ... 11

5.2 Palette Tools .. 11

5.3 Movable Figures .. 12

5.4 Deletion of Figures .. 12

3

1 Executive Summary
This document describes the user specification of the Graphical Model Editing

Framework (GMEF). GMEF is comprised of a set of libraries providing a standard set of

tools to enable developers to associate multiple graphical editors with a specific type of

model without the overhead producing complex algorithms to handle the modification of

a model between editors, and the repetitive cut and pasting of code to reference a model.

GMEF acts as a bridge to associate model types with any editor designed to

represent a model graphically. The graphical representations are modifiable and are

reflected in the underlying model. GMEF accomplishes this by monitoring the editor for

changes. When objects are changed in the graphical editor, it notifies the framework and

the framework updates the model with the current changes. This document will define, in

detail, the GMEF Framework starting from the defined logic to handle model references.

Figure 1 High-level view of GMEF

As Figure 1 outlines, the major functionality of GMEF is described below:

1. Allows users to create a graphical editor using custom shapes to edit or create a

model.

2. GMEF enables the graphical editor to access information about the model.

3. The framework relays information between the model and the editor. When a shape

is modified in the editor, listeners notify the framework of these changes then decide

what action to follow. Finally, the framework analyzes the changes made and

invokes a handler that updates the Java object representation of the referenced model.

Upon a save, the model changes are saved into a file.

4. The framework is model-agnostic, allowing it to work with any model type that is

properly parsed and registered with it.

5. GMEF exports a separate file for storing the graphical data needed to represent a

model.

4

2 Installation
GMEF is an Eclipse plug-in that can be added to any developers project environment.

This installation guide includes steps on how to install the GMEF plug-in in the Eclipse

environment.

2.1 Eclipse Environment

2.1.1 Java 1.5.06

Download and install J2SE™ Development Kit 5.0 Update 6 (Select JDK 5.0

Update 6, not the NetBeans version)

http://java.sun.com/j2se/1.5.0/download.jsp

2.1.2 Eclipse 3.2

1. Create a c:\proj directory, this will be your workspace for Eclipse

2. Download and install Eclipse 3.2

http://www.eclipse.org/

Extract all files to c:\eclipse (i.e., eclipse.exe should be located at

c:\eclipse\eclipse.exe)

3. Create a shortcut on your desktop to Eclipse

Right Click on the desktop, select -> New -> New Shortcut

Location of Item: C:\eclipse\eclipse.exe -data C:\proj -vm "C:\Program

Files\Java\jdk1.5.0_06\bin\javaw.exe"

Name: Eclipse

2.1.3 Eclipse Configuration

Setup Eclipse to recognize the correct compiler settings

From within Eclipse, select: Window ->Preferences… -> Java -> Compiler -> Compiler

Set Compliance Settings to 5.0

2.1.4 Install Graphical Editing Framework (GEF)

1. Within Eclipse, Select Help -> Software Updates -> Find and Install...

2. Select "Search for new features to install" -> Next

3. Select "Callisto Discovery Site" -> Finish -> OK

4. Under "Graphical Editors and Frameworks", select "Graphical Editing Framework

3.2.0.v20060626"

5. This should also install the Draw the Draw2d plug-in.

2.2 GMEF Plug-in Installation

To install the GMEF Plug-in:

If your editor is a plug-in:

1. Place the autonomics.gmef(1.0.0).jar GMEF Plug-in in the “Plugins” folder of

your eclipse installation.

http://java.sun.com/j2se/1.5.0/download.jsp
http://www.eclipse.org/

5

2. Open the plugin.xml file in the “Plug-in Manifest Editor” located under the

project folder by double clicking on the Plugin.xml file.

a. If the manifest editor is not open, right click the plugin.xml file and select

“Open With” “Plug-in Manifest Editor”.

Figure 2: Plug-in Manifest Editor

3. Next, select the “Dependencies” tab within the editor, and click “Add” to add the

GMEF plug-in into the project via the “Plug-in Selection” tab.

Figure 3: Plug-in Selection

4. FINISHED!!!! You are now ready to start using the GMEF Framework plug-in.

6

If your editor is a Java Project (Not a plug-in project):

1. Place the autonomics.gmef(1.0.0).jar GMEF Plug-in in the “Plugins” folder of

your eclipse installation.

2. Right click on the desired java project folder, located under the “Package

Explorer” tab. Select “Build Path” from the Menu tab. Then click “Configure

Build Path” to open the “Properties” editor.

Figure 4: Java Build Path

3. Select the “Libraries” tab, and then click the “Add External Jars” button. Next,

select the autonomics.gmef(1.0.0).jar located in the “Plugin” folder of your

Eclipse installation.

4. Click OK. FINISHED!!!! You are now ready to start using the GMEF Framework

plug-in.

7

3 Implementing a Custom Diagram Editor
This section describes the classes that are needed to create a custom diagram editor

for GMEF. These classes allow the user to add in specific elements that are used to

represent specific models. For information on implementation of functions within these

classes please refer to the Java Documentation (Java Doc) of GMEF. Additionally, there

is an example editor available that can be accessed through the following webpage,

https://cse498t05s.cse.msu.edu/.

3.1 Diagram Editor

To create a new editor using the GMEF framework, the developer needs to create a

new class that extends DiagramEditor. A customized palette can be created by

overriding the generic Java palette API’s that extend the DiagramEditor.

To associate specific model references and figure relationships with an editor, the

developer will have to create a model handler that implements GMEF’s handler

interfaces. In our implementation the class is called MOFDiagramEditor.

The following sections will describe how to associate specific handlers with a

custom editor.

3.2 Model Handler Factory

To reference a specific model with an editor, the developer must first create a

factory that creates instances of model handlers for a type of model. This factory must

implement the IModelHandlerFactory interface. After creating the model handler

factory, the user must then register it to the DiagramHandler instance, which is

available through the DiagramEditor by the protected variable diagramHandler.

In our implementation this class is named MOFModelHandlerFactory and

exists as a Singleton. It is designed this way to allow the instance to be referenced in the

DiagramHandler class. This instance is registered to the DiagramHandler via the

method “addModelHandlerFactory()”.

3.3 Model Handler

Next, the developer will need to create a model handler to allow the GMEF

Framework to handle instances of a specific model type. This class must implement the

IModelHandler interface. To associate the class with GMEF, a model handler

factory must exist that creates instances of this model handler.

In our implementation this class is called MOFModelHandler. This class is

instantiated by the MOFModelHandlerFactory, which is accessible through the

DiagramHandler.

3.4 Figure Handler

To create viewable figures in an editor, the user must first create a figure handler

for the type of figure to be represented visually. Figure handlers will be used to create

https://cse498t05s.cse.msu.edu/

8

instances of viewable objects in an editor given an element of its defined type from a

model and a location to draw the figure in the editor.

To create a figure handler, the user must create a class that implements

IFigureHandler. A figure must also exist for the FigureHandler to use.

In our implementation this class is a singleton, which means only one instance of

this class exists at a time. The methods that implemented IFigureHandler were used

to cast the object into a specific implementation type that is dependent on the model. In

the case of the Class Diagram editor using a MOF Model, objects were cast into a Class

implementation. The getFigure() method not only gets the figure, but it also creates it by

setting an IFigure to a new CustomFigure, which was ClassFigure in our

implementation.

3.5 Figure

The GMEF Framework contains generic components to build any type of figure

representation of a model element in an editor. These components are designed only for

figure elements that contain compartments. For example, a UML class contains three

compartments, which are Class label, attributes, and operations. Within these

compartments are 0 to n sub compartments for various elements.

To develop a visual figure in the editor, the user must use the classes within GMEF

to develop a Figure. This is done using the hierarchical structure of compartments within

GMEF.

In our implementation, a figure was developed to represent a class element from a

model. The name of our Figure representing a class within a MOF model was

ClassFigure. This class was developed first by creating three compartments. One

compartment was created for the title of the figure. There were two other compartments

created for the attributes and operations of the class.

To create the Title compartment:

1. The CompartmentFigure class was extended to create a

TitleCompartmentFigure class for formatting the layout of the class label

compartment.

2. After creating the TitleCompartmentFigure class, this class is the first

compartment created within GMEF to hold the class name. After creating the title

compartment was created.

3.6 Connection Handler

Connection handlers are used to create instances of relationships in the diagram

editor given a type of relationship from a model, and a location to draw the relationship

in the editor. The handler is designed as a single instance, which will be used by an edit

part to instantiate instances of a type of relationship from a model. All connection

handlers must be registered to each ConnectionTypeEditPart instance for

visualization of a relationship in the diagram.

9

In our implementation, a connection handler was developed called

ConnectionFigureHandler to create figure representations of a type of

relationship in a model. One type of figure relationship instance that is instantiated by a

handler is an aggregation relationship. These figure instances are created through the

AggregationRelationshipFigure class. The

AggregationRelationshipHandler creates instances of the

AggregationRelationshipFigure for every instance of this type of relationship

in the model.

To create a connection handler;

1. The user must implement the IConnectionHandler interface as a singleton

class, defining custom logic to create instances of the figure representation of the

relationship desired.

2. After implementing the interface to create the connection handler, the user must

register the connection handler to the DiagramEditPartFactory via the

addConnectionHandler() method. The DiagramHandler is accessible via the

protected data member “diagramHandler”, located in the DiagramEditor

class.

Example:

diagramHandler.getEditPartFactory().addConnectionHandler

(YourHandler.getHandlerType(), YourHandler.getInstance())

3.7 Connection

A Connection is an element of the Diagram Model that visually displays

relationships between figures within a model. An example of a connection within a model

that would be referenced is an inheritance relationship between two classes.

The GMEF Framework contains generic components to build the figure

representation of relationships within a model. To develop a visual relationship in the

editor, the user must first extend the PolylineConnection class, and then create

custom logic to define the visual representation of the relationship.

To create a Connection figure:

1. The user must implement a class that extends GEF’s PolylineConnection

class.

2. Next, define custom logic to create the desired graphics (e.g.: dotted line

relationship, solid line relationship, etc.) and decorations for the type of

relationship figure.

3.8 Drop Handler

The purpose of the Drop Handler is to allow developers to specify what types of

objects are to be dropped on the editor and how to handle those elements. The class that

is created to perform this task needs to implement IDropHandler. For GMEF to use

this handler, it must be added in the developers’ custom editor.

10

In our implementation, this class is a singleton. For the MOF diagram editor, we

used the class MOFDropHandler to handler the objects that were dropped in the editor.

This class checked the object that was dropped and if it were a Class the

MOFDropHandler would cast it appropriately.

4 Diagram File Format
GMEF uses a custom file format called MOF Model Diagram (mmd). The mmd file

format holds xml formatted data that any editor extending GMEF can read and save to.

An example diagram file might look like the following:

<?xml version="1.0" encoding="UTF-8"?>

< gmef:diagram>

<figure gmef:elementReferenceID="434" gmef:figureTypeID="06804">

<gmef:point gmef:x="0" gmef:y="0"/>

<gmef:model gmef:type="MOF" gmef:path="C:\DemoModel.mof"/>

</gmef:figure>

<figure gmef:elementReferenceID="123" gmef:figureTypeID="25073">

<gmef:point gmef:x="0" gmef:y="100"/>

<gmef:model gmef:type="MOF" gmef:path="C:\DemoModel.mof"/>

</gmef:figure>

<diagramRelationship gmef:connectionTypeID="67865">

<gmef:source>06804</gmef:source>

<gmef:target>25073</gmef:target>

</diagramRelationship>

Explanation:

Each file contains a <diagram…> tag that encapsulates all objects contained within

it. The figures are denoted by the <figure… > tag. Each figure contains its location

within the diagram, as well as information about the model that it comes from.

There may also exist a relationship between the two figures, which is denoted in the

<diagramRelationship…> tag. A relationship holds the information about the

connection between any two figures within the diagram. Relationships are not always

present within a diagram file, however, as many types of relationships can be derived

directly from the Figure data by itself. Typically a relationship is only present if it

contains specialized drawing information, such as bend points or special decorations. See

the GMEF Technical Specification Document for further information on how GMEF

handles this information.

11

5 Editor Feature Outline
This section highlights the major functionality included in an editor that properly

extends GMEF. The purpose of this section is to demonstrate how to access and use the

features that GMEF offers.

5.1 Drag and Drop

GMEF allows for Drag and Drop of elements from a model navigator to the editor

diagram. This is done by selecting the model element, clicking on it, and dragging it

across the screen and releasing on the editor. Upon drag and drop of the element, the

user also has the ability to Undo or Redo the action.

Figure 5: Drag and Drop

5.2 Palette Tools

Any editor extending GMEF comes equipped with a FlyoutPalette, which is used to

hold tools for manipulating a diagram. While the palette itself is customizable, GMEF

initially supports the following basic tools:

12

Figure 6: Palette

 Folder – A container used for organizing palette tools.

 Selection – Place the focus on a particular figure within the diagram by

simply left clicking within the figure’s boundary.

 Marquee – Place the focus on one or more figures within the diagram by

clicking and dragging a bounding box around the figures boundaries.

 Connection – custom implementation needed.

5.3 Movable Figures

Figures that are created on the diagram have the ability to be selected and moved

by the user. This allows for easy placement and manipulation of diagrams. After moving

the figure, GMEF has the ability of Undo and Redo of the previous state.

5.4 Deletion of Figures

Figures can be deleted from the diagram in a variety of ways. After the figure

object is selected, the user can press the “Delete” key on the keyboard, select the red “X”

on the top toolbar, or select “Delete” from the drop down menu.

