
CSE 498, Collaborative Design 2. Technical Specifications

Michigan State University 2-1 Department of Computer Science and Engineering

2. Technical Specifications

Wayne Dyksen
Brian Loomis

Department of Computer Science and Engineering
Michigan State University

Spring 2005

CSE 498, Collaborative Design

1-2

Overview

• What is architecture?
– How do I get started on the project?

• Case study driven discussion
• Thinking like an architect

– How to break it down

1-3

What is programming?

• Programming is both the act of applying a logical approach 
to solving a problem and writing that logic down in a form 
that the computer understands
– Programs solve problems and are tools, expressing our imagination 

about the problem

• Writing programs is more like writing mathematical proofs 
than building a house
– Each developer has a toolbox of constructs
– Apply the constructs iteratively in steps to create a solution to the 

problem
– Each program is a unique solution but not necessarily the only one

1-4

In the early part of a project…

• Requirements gathering and understanding
– State the problem unambiguously

• Architecture and design
– Determine your approach to the problem

• First working prototype
– Test your hypothesis

• Feature complete build
– Formalize the proof

• Ship it!
– Turn it in!

1-5

Design Process Overview

Logical Design
Conceptual Design

Scenarios Physical Design

Components,
User Interface, and 
Physical Database

Objects and Services,
User Interface, and 
Logical Database

1-6

Starting with something like…

• To create a system to sell moving boxes and 
packing supplies on our web site. The 
solution should allow for individual franchise 
pricing and include a tracking and reporting 
system.



CSE 498, Collaborative Design 2. Technical Specifications

Michigan State University 2-2 Department of Computer Science and Engineering

1-7

Understanding requirements
• Capture the end-user or project sponsor’s intent
• Starting with…

– Often no formal docs, maybe only a shared vision
– Maybe an incomplete problem statement

• Ending with…
– Formal phrasing of requirements in a document

• Defined scope of what is in and not in the solution (boundary 
conditions and features not included)

• User scenarios or experiences
– Validated initial schedule, cost, and risk (things not yet known)

• Approach…
– Identify business entities (objects) and relationships
– Remove ambiguity and logical/business inconsistencies
– Validate business rules and assumptions

1-8

Content Purpose

Problem statement

Vision statement

Solution concept

User profiles

Business goals

Design goals

Why you want to do it

What you want the product to be

What you will do

Who will use the product

What you want to accomplish

How you plan to accomplish it

Possibly a vision document

1-9

Another example: Matrix

• The scope of this project is to create an 
online publication editor that would allow 
users to associate multimedia objects with 
their own writing in more complex ways. This 
might include such things as embedding 
objects within text, dynamic slide shows, and 
time-synced presentations of multiple objects. 
Although the development platform for this 
project is negotiable, MediaMatrix at this 
point utilizes PHP, MySQL, XML, XSL, and 
SMIL as its development environment. 

1-10

Architecture and design
• Start translating the requirements into a plan and logical design 

that can be implemented as a program to solve the problem
• Starting with…

– Requirements and user scenarios
• Ending with…

– Technical (or functional) specification
• Architecture of solution

– User interface mockup
– Interfaces to other systems or data formats
– Entity/object model for system (pseudo-code for business data 

rules and functions)
– Data schema

• Identification of core feature set for the prototype
– Test plan, schedule, risk analysis

• Approach…
– Break a big problem into lots of little problems
– Identify all the moving parts and interactions

1-11

Contents of a technical spec
Content Purpose

Vision summary

Design goals

Requirements

Usage summary

Features

Dependencies

Schedule

Issues

Appendixes

What you want the product to be, justification for it, 
and key high-level constraints

What you want to achieve with the product

What you require from the product including “non-
functional” requirements like reliability, scalability, 
security, etc.

When the product will be used and who will use it

What exactly the product does, user interface mockup, 
event models, object diagrams (and use cases), data 
schema

Other factors the product 
depends on (external interfaces and compatibility)

Key dates and deliverables

What risks might impact the project

Network topology, deployment plans, dev environment 
setup

1-12

Examples
– Quantum, Empowernet
– Last semesters…

• Every good spec is different but similar
– Make sure you are complete

• All tiers of the architecture – DB, classes, UI
• Topology
• Standards

– Make sure you use two models at least
• Network diagram and class descrips
• Use cases

– Ask yourself if you could be the tester on this system



CSE 498, Collaborative Design 2. Technical Specifications

Michigan State University 2-3 Department of Computer Science and Engineering

1-13

Architecture constraints
• Communication

– Speed: Ethernet, GigE, 
802.11b/g, or dialup

– Protocol: TCP/IP, IrDA, 
POTS

• Topology
– One machine versus 

multiple interacting
– External systems

• CPU speed
– PDA, Itanium server, 

mainframe

• Memory availability
• Device-specific 

parameters
– PDA display size or ink 

on TabletPC

• Legacy support or 
previous versions of the 
current app

1-14

Architecture tradeoffs
• Complexity

– Number of technologies 
in use

– Design patterns vs. 
execution speed

– Number of tiers or 
subsystems

• Fully-custom, semi-
custom, or off-the-shelf
– Platform (OS, servers, 

SDKs, ++)
– Language and compiler 

choice
– Project type choice

• Appropriate technology
– Reusable modules
– Special-purpose 

languages
– Community support

• Tools and process
– How automated a 

process do you need?
– How do you 

communicate designs? 
(UML, ORM, etc.)

1-15

A Basic Modeling Process

1. Identify logical entities (the “things” and their operations) from 
the requirements statements

2. Make these into variables with specific data types
3. Identify starting point for problem (what do I want to solve?)
4. Determine what entities and logical operations you need from 

this starting point and relationships between objects
5. For each logical operation, determine inputs and outputs and 

types of looping constructs (pseudo code)
6. Analyze entities for non-functional requirements – exceptions, 

security… per coding standards

1-16

Bigger examples:

1-17

Traveler(s) Email

Internet

Expedia
MSN

U
til

ity

Gateway
Servers

S
Q

L

W
eb

eM
ai

l

Router

CORRE

WTP

Frame Relay

Tickets

W
T

P
 L

A
N

Ticket Printer

Airborne
UPS
USPS

Courier

E
xc

ha
ng

e

W
or

ld
S

pa
n

G
at

ew
ay

Agents

IV
R

WorldSpan

Airlines Hotels Car
Rental

Front End
Processor

Main CRS

Email

Telephone System

Tr
av

el
 A

ge
nc

y 
N

et
 (X

.2
5)

Many Direct Connections

Web
Browser

Expedia
Tickets

4 D
irect Leased Lines

(X.25)

OPs
Tools

expedia.com



CSE 498, Collaborative Design 2. Technical Specifications

Michigan State University 2-4 Department of Computer Science and Engineering

1-19

Summary
• What we covered

– Identify what you don’t know
– Get to the spec quickly and completely
– Learn what questions to ask early on in your projects
– Remember, “every system was built by mortals”

• Resources
– Functional specs samples are online
– Look at your team’s assignment and figure out what you 

don’t know
– Start communication with your customer
– When is your spec due?


