CSE 498, Collaborative Design 2. Technical Specifications

MICHICAN STATE

UNIVERSITY s OveI‘VieW

2. Technical Specifications * What is architecture?

— How do | get started on the project?
e Case study driven discussion

» Thinking like an architect

CSE 498, Collaborative Design — How to break it down

Wayne Dyksen
Brian Loomis

Department of Computer Science and Engineering
Michigan State University

Spring 2005

I
»

v

s What is programming? s In the early part of a project...

* Programming is both the act of applying a logical approach * Requirements gathering and understanding
to solving a problem and writing that logic down in a form — State the problem unambiguously
that the computer understands - Architecture and design

— Programs solve problems and are tools, expressing our imagination
about the problem
« Writing programs is more like writing mathematical proofs
than building a house
— Each developer has a toolbox of constructs
— Apply the constructs iteratively in steps to create a solution to the

— Determine your approach to the problem
 First working prototype

— Test your hypothesis
* Feature complete build

— Formalize the proof

problem * Shipit!
— Each program is a unique solution but not necessarily the only one — Turnitin!
s Design Process Overview s Starting with something like...

Conceptual Design 1 . + To create a system to sell moving boxes and
Seeni Logical Design
cenarios

AV - - packing supplies on our web site. The

Objects and Services, | Physical Design solution should allow for individual franchise
User Interface, and —
Logical Database Components, pricing and include a tracking and reporting

User Interface, and
Physical Database system.

Michigan State University 2-1 Department of Computer Science and Engineering

CSE 498, Collaborative Design

2. Technical Specifications

Understanding requirements

« Capture the end-user or project sponsor’s intent
« Starting with...
— Often no formal docs, maybe only a shared vision
— Maybe an incomplete problem statement
« Ending with...
— Formal phrasing of requirements in a document

« Defined scope of what is in and not in the solution (boundary
conditions and features not included)

« User scenarios or experiences
— Validated initial schedule, cost, and risk (things not yet known)
« Approach...
— Identify business entities (objects) and relationships
— Remove ambiguity and logical/business inconsistencies
— Validate business rules and assumptions

Another example: Matrix

v

» The scope of this project is to create an
online publication editor that would allow
users to associate multimedia objects with
their own writing in more complex ways. This
might include such things as embedding
objects within text, dynamic slide shows, and
time-synced presentations of multiple objects.
Although the development platform for this
project is negotiable, MediaMatrix at this
point utilizes PHP, MySQL, XML, XSL, and
SMIL as its development environment.

Contents of a technical spec

>

Content
Vision summary

Purpose
What you want the product to be, justification for it,
and key high-level constraints

Design goals What you want to achieve with the product

Requirements What you require from the product including “non-
functional” requirements like reliability, scalability,

security, etc.

Usage summary

—_—
—_—
—_—
— When the product will be used and who will use it
—_—

Features What exactly the product does, user interface mockup,
event models, object diagrams (and use cases), data

schema

Dependencies — Other factors the product
depends on (external interfaces and compatibility)
Schedule —_— Key dates and deliverables
Issues = What risks might impact the project
Appendixes —_ Ne‘twork topology, deployment plans, dev environment
setup

111

Michigan State University

s Possibly a vision document

Content Purpose

Problem statement = Why you want to do it

Vision statement = What you want the product to be

Solution concept = What you will do

User profiles — Who will use the product

Business goals = What you want to accomplish
—p

Design goals How you plan to accomplish it

Architecture and design
s g >
« Start translating the requirements into a plan and logical design
that can be implemented as a program to solve the problem
« Starting with...
— Requirements and user scenarios
* Ending with...
— Technical (or functional) specification
« Architecture of solution
— User interface mockup
— Interfaces to other systems or data formats

— Entity/object model for system (pseudo-code for business data
rules'and functions)

— Data schema
«+ Identification of core feature set for the prototype
— Test plan, schedule, risk analysis
* Approach...
— Break a big problem into lots of little problems
— Identify all the moving parts and interactions

s Examples

— Quantum, Empowernet
— Last semesters...

« Every good spec is different but similar

— Make sure you are complete
« All tiers of the architecture — DB, classes, Ul
« Topology
« Standards

— Make sure you use two models at least
* Network diagram and class descrips
* Use cases

— Ask yourself if you could be the tester on this system

112

2-2

Department of Computer Science and Engineering

CSE 498, Collaborative Design

2. Technical Specifications

Architecture constraints

— Protocol: TCP/IP, IrDA, .

s « Communication * CPU speed
— Speed: Ethernet, GigE, — PDA, Itanium server,
802.11b/g, or dialup mainframe

Memory availability

POTS . .
| « Device-specific
* Topology parameters
- One_ma(_:hlne Versus — PDA display size or ink
multiple interacting on TabletPC

— External systems
« Legacy support or

previous versions of the
current app

I
»

s A Basic Modeling Process

Identify logical entities (the “things” and their operations) from
the requiréments statements

Make these into variables with specific data types

Identify starting point for problem (what do | want to solve?)
Determine what entities and logical 0perat|ons you need from
this starting point and relationships between objects

For each logical operation, determine inputs and outputs and
types of looping constructs (pseudo code)

Analyze entities for non-functional requirements — exceptions,
security... per coding standards

o g pON B

Blue

AIRWAYS"

Caea®ds s

work bere brarn mare vhepdlae

buyickels botelaicars travelinly peakop

TAKEFIVE [/=55 ni

LATEST DEALS & NEWS

Bosten and D.C. lo Florida kom

QUICK LINKS Get more

LEGROOM...

winy. Click to search our lowest CLICK POR DITAILS &8
- Online Flight
4 it announces nom
Check-in

nenalop serace o Busion o Las Vegas
IV and San Jose, CA starting May 3, 2005

JotBlue has joined

[I T

£ 2004 Surbles Avars stemap | faqn | your privacy | contact us | jobs | Compamyiiue

] e v, et o feor ke s g

B ntermet

Michigan State University

Architecture tradeoffs

»

« Complexity
— Number of technologies
in use
— Design patterns vs.
execution speed
— Number of tiers or
subsystems
¢ Fully-custom, semi-
custom, or off-the-shelf
— Platform (OS, servers,
SDKs, ++)
— Language and compiler
choice
— Project type choice

« Appropriate technology
— Reusable modules
— Special-purpose
languages
— Community support
* Tools and process
— How automated a
process do you need?
— How do you
communicate designs?
(UML, ORM, etc.)

Bigger examples: Google

v

expedla com

Aitines Hotels car
Benial

2-3

Department of Computer Science and Engineering

CSE 498, Collaborative Design

2. Technical Specifications

Summary

* What we covered
— Identify what you don’t know
— Get to the spec quickly and completely
— Learn what questions to ask early on in your projects
— Remember, “every system was built by mortals”

* Resources
— Functional specs samples are online

— Look at your team’s assignment and figure out what you
don’t know

— Start communication with your customer
— When is your spec due?

Michigan State University

2-4

Department of Computer Science and Engineering

