

XYZ Corporation

KLM Replacement
Architecture and Functional Specification

Version 1.1

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 2

Revision History
Date Version Description Author

27 March 2002 1.0 First draft Someone

4 April, 2002 1.1 Updated database diagram and functional
spec sections from David and Jim

Brian Loomis

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 3

Table of Contents
1. Introduction 2

1.1 Purpose 2
1.2 Scope 2
1.3 References 2

2. System Characteristics 2
2.1 Versioning of Lables 2
2.2 Application Security 2
2.3 Data Formats and Conversion 2
2.4 Multiple Repositories and Caching 2

3. Use Cases 2
3.1 User Scenario Actors 2
3.2 Use Cases 2

3.2.1 Manual Print 2
3.2.2 WYSIWYG Designer 2
3.2.3 External Application 2
3.2.4 Administrative Use Cases 2

4. Deployment Constraints 2
4.1 Target Platform Description 2
4.2 .Net Platform Description 2
4.3 Deployment Process 2

5. Presentation Services Overview 2

6. Business Services Overview 2

7. Data Services Overview 2
7.1 Data Access Component 2
7.2 File Access Component 2
7.3 Log File Component 2
7.4 Data Repository 2

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 4

KLM Replacement
Architecture and Functional Specification

1. Introduction
This document describes the high-level architectural components of the KLM replacement system, standards
applicable to the development, technology selection, deployment specifications, and other system characteristic
notes (security, caching, etc.). This document serves as a jumping-off point for subsystem (component) functional
specifications that provide developer-level documentation.

1.1 Purpose
Conceptual, or logical, business objects are captured through requirements analysis and are refined into designed,
or physical, classes. Typically a single logical business object will have a corresponding class in each of the
presentation services, business services, and data services tiers at implementation. After the logical object model is
a drafted, separate diagram plus interaction diagrams for each tier are designed and will be maintained in the
project design folder. All objects will be grouped into libraries (DLLs) or assemblies after considering
performance implications, network deployment, and other architectural aspects.

For logical design documents of the KLM replacement application, please refer to the Visio diagrams in the project
documentation folder. The database schema diagram is also contained in a separate Visio diagram.

1.2 Scope
The sections below describe the related documentation on this project, the terminology used when describing
system attributes, and then contains sections describing the deployment and functional specification (design) of
each tier of the application (user/presentation services, business services, and data services).

1.3 References
The following documents serve as background reference for this project (stored on the SharePoint Team Services
site at \\ppoqmcclure\sharepoint.htm and in \\kioscdocs\kiosc :

• Project vision document (KLM Vision.doc)

• Master schedule and project plan (KLM Replacement Main Project Plan.mpp)

• System requirements document (KLM System Requirements.doc)

• System architecture document (KLM System Arch.doc)

• System development plan (KLM System Development Plan.doc)

• System design diagram (Design Diagram.doc)

• Logical design model (KLM Logical Model.vsd)

The following terms are used throughout the document:

Applications:

WYSIWYG Editor – the user interface application within KLM replacement that allows authoring of
labels (creation and editing) as well as Manual Print functionality.
Manual Print – the user interface application within KLM replacement that allows only searching and
printing of labels.
Print engine – a subsystem (component) of KLM replacement that assembles parameterized labels from
the repository and user inputs and manages the output to a specific printer instance.
Converter – the application within KLM replacement that migrates existing label data into the KLM

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 5

replacement database.

Labels:

Label – the simplest printable unit within the KLM replacement repository. A label may have a title,
associated graphics and metadata. Basic operations on labels include creation, creation from an existing
label (cloning), viewing, editing (update), saving, printing, reprinting, deleting, and archiving.
Label template – same as Label. The distinction between a template and a label instance is that the
template is the basic information for any instance of a label; when the label is printed, the specific
information for that label is inserted in the audit log (the template remains unchanged).
Thumbnail – a smaller version of the final printed label as it would appear on the screen before printing.
For performance reasons, the thumbnails may be pre-generated and stored in the repository.
Graphics – a file or files associated with a label and required for its printing. The graphics will have the
raw bitmap(s) as well as metadata such as searchable keywords and a title.
Label Metadata – descriptive information about a label. Metadata includes searchable keywords and
categorization information (a hierarchical associative list), label stock size, version information and tags,
access permissions, BOM part number, status (?), a flag for whether to track reprints or not, reference to
owning repository (owner database for cache management), product line site and station identifiers,
prompts, check-in/checkout information (user id), and product association (mapped products). Note that
metadata is not a single table in SQL Server and will most likely be distributed through a variety of lookup
tables.
Prompts – descriptions of information required or optionally supplied by the user when physically
printing a label. Prompts may be static text, require the user to enter optional or mandatory data, or may
be an automatically supplied value requiring user confirmation. For example, a serial number may be
automatically generated based on sequence in a series, the part number may be supplied from a product
association, a third prompt may supply a static text string.
Serial number – a type of prompt where a number is generated and formatted based on product
association requirements and confirmed by the user at print time. Serial numbers may be compound fields
composed of static text, incrementing values (integer, hexadecimal, or other with a specified starting seed
value or block number for an assigned site/user), or user-entered text.
Label Stock – the size and dimensions of a specific paper stock used for printing labels. The stock also
includes the vendor identification and type. For example, a particular label may be printed on stock of
size 5.5” W x 6.8”L from Avery on form 2280.
Version – the revision of a given label including information such as tags (“PRODUCTION VERSION”,
“DRAFT”, “APPROVED”) and a sequential number (version 1, 2, 3, etc.).
Audit Log – the recorded capture of system events including the printing of labels (and actual
parameters), and reprints. Other events include security events.

Printers:

Printer type – the list of printer types (Zebra, generic PostScript, etc.) and relevant parameters for access
(network-aware, resolution, etc.).
Zebra printer – a printer capable of understanding the ZPL format
Generic printer – a printer capable of printing PostScript or generic List and Label format that generally
does not understand ZPL.
Printer instance -- A specific printer instance will have a printer type plus values for each parameter; for
instance, “Printer 56 is a Zebra printer on the network at \\myZServer\ZPrinter1 with a resolution of
XYZ.”
Print format type – the print specification and representation for a label or print job.
ZPL format – a format type understood by Zebra printers.
LBL format – a format type understood by generic printers.

Users and security:

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 6

User – a set of credentials to access the KLM replacement applications; may consist of Windows userid
and password or an external application name. Also includes information on how to contact the user, such
as phone number or email. Users are logically collected in groups, belonging to a site, and users have
roles that they can be assigned to.
Role – the job functions within the KLM replacement system that a user or group can perform (maps to a
group of permissions). Example roles may include label printing only (print-only user), engineer/design
labels, create labels (label authoring), administrate system (administrator), external application integration
(system user). Each role will enable or disable specific features of the application depending on the
permissions allowed to the role; for example, label authoring may enable the menu items in the
WYSIWYG editor to create, edit and save labels.
Group – a collection of users or other groups for administrative purposes. Groups can be assigned roles.
Note that the most broad set of permissions may apply to a given user, so that a user in the label authoring
role and in a group that only has label printing role will get authoring permissions
Permission – a basic operation on a label (such as creation, editing, saving, printing). Permissions are
assigned to roles so that a role may contain 1 or more permissions and then users and groups can be
assigned to the role.
Repository – a data storage mechanism (file system, database, etc.) that provides labels and associated
details to appropriate users. Repositories may be local on a particular machine (e.g., a local XML file
cache) or may be centralized on a SQL Server installation. Repository attributes include a repository
name, unique identifier, and whether the repository can serve as a master repository to other repositories
(e.g., whether users can create new or edit existing labels in this repository).
Site – same as Repository.
Subscription – a method for one repository to reference updated labels in a separate repository.
Subscription attributes include the method of subscription (push or pull), which items are available
through the subscription, and the method that updates are sent (SQL DTS, email, FTP, etc.). For example,
the Panang repository may subscribe to the Colorado Springs repository for all labels as a push
subscription (on-change) via SQL DTS.

External applications:

External application – any application that provides data to or receives data from the KLM application.
KTime – the time provider application within KIOSC.
KBusinessRules – the custom logic provider within KIOSC for serial number validation.
KSecurity – the security module within KIOSC.

2. System Characteristics
This section discusses general architecture characteristics that apply to the entire system and may be used in many
parts of the functional specification. Specifically, this sections discusses the versioning of labels, the security
infrastructure, data formats of labels in the database, and multiple repository/caching approaches.

2.1 Versioning of Lables
Labels may exist in multiple versions (or revisions). Each version may represent a particular status of the label
(approved for production, not approved, pending approval), or be applicable to a particular set of part numbers
(e.g., part number revisions 1-5 on product XYZ get version 4 of the label, whereas part number revisions 6 or
higher get version 10 of the label).

When manual print users search for a label, they will see the current approved label for the given part number
revision for the product they are working with. In the label WYSIWYG designer, the user can select any version of
a label to view or select the checked out version to edit and save. External applications follow the same rules as
manual print users.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 7

Note that certain status changes may involve manual approval by a second person before moving to an approved
for production status. This will be discussed in the WYSIWYG use cases below.

The labels table will group versions of a label by “title”, or the text name for the label. The particular revision is an
incrementing integer in the Revision column. A new row is added on label checkout in the WYSIWYG designer,
with a new revision number. The status identifier is a GUID lookup into the label_status table. Sample schema is
shown below:

Labels table
Title Revision ID Status Id Text CheckoutUser
"My Label" 1 {5E2891FA-...4200A} {5E2891FA-...4225A} Some LBL text goes here… NULL
"My 2nd Label" 1 {5E2891FA-...4200B} {5E2891FA-...4225C} Initial draft of LBL NULL
"My 2nd Label" 2 {5E2891FA-...4200C} {5E2891FA-...4225C} Second draft of LBL NULL
"My 2nd Label" 3 {5E2891FA-...4200D} {5E2891FA-...4225A} Final version for production NULL
"My 3rd Label" 1 {5E2891FA-...4200E} {5E2891FA-...4225C} Initial draft of LBL NULL
"My 3rd Label" 2 {5E2891FA-...42010} {5E2891FA-...4225C} Second draft of LBL NULL
"My 3rd Label" 3 {5E2891FA-...42011} {5E2891FA-...4225A} Final version for production NULL
"My 3rd Label" 4 {5E2891FA-...42012} {5E2891FA-...4225C} First rewrite for new part number NULL
"My 3rd Label" 5 {5E2891FA-...42013} {5E2891FA-...4225B} Ready for approval DOMAIN/JoeUse

Label_Status table
ID Name Description
{5E2891FA-...4225A} Approved This status is for labels that can go into production
{5E2891FA-...4225B} Pending Approval This status is for labels that must be approved by a label designer before going to Approved
{5E2891FA-...4225C} Not Approved This is a holding status

2.2 Application Security
Application security will be provided through specific tables in the KLM replacement database to authenticate and
authorize users into groups of functional capability as well as data access to all or part of the label repository.

A user is currently assigned access to applications via the User_Authorization table. Each user has an entry in this
table and is assigned access to each application. This access is hierarchical in nature in that a user’s access includes
all the capabilities of lower access levels.

There is a need to be able to assign capabilities, or features, to users independently of their relationship to the
“level” of other users. To address this need the Kiosc Security Enhancement has been proposed. Another goal is to
be able to more easily assign a new user access that existing users already have, but still on an application-by-
application basis.

Applications needing to have such additional features, must define their feature list. Care should be taken so that no
two features are mutually exclusive as the features may be enabled one way for one Group and then enabled in the
opposite fashion in another Group, and a user might get assigned to both groups. Each feature is enabled and
disabled independently as they are assigned to a Group, for that application.

A Group could be assigned features from more than one application. When a given application requests a user’s
access, only the features pertaining to that application are provided.

Users assigned to a Group, receive access to the features assigned to the group by an application, however the users
also have to be given access to the application by the User_Authorization table.

A user can be assigned to none, one, or more groups. When assigned to multiple groups an application is provided
a superset of the features the user has access to by “OR-ing" the features from the multiple Groups. If a user is not

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 8

assigned to a Group and the application requesting the user’s access has features defined, all the features will be
disabled for the user.

Another capability of this new security is addressing the need of some applications to allow access to “areas” of
their applications which some of the application’s features apply, such as create, modify, or delete. Instead of
adding separate features, like “Save Site1” and “Save Site2”, there would be one feature “Save” and then the areas,
“Site1” and ‘Site2” would be independently associated with different (or in some cases the same) Groups, thus
allowing the application to know that the users has the “Save” feature but only for those “areas” that are associated
with the Group. This allows a new “area” to be added in the future without the program having to be modified in
order to handle it. The new area is handled just like the existing areas; it becomes just one more item in an existing
list (such as products).

An additional feature for the KLM application will be the association of the Label_ID and the Group.

The following table graphics show how this schema is implemented:

Access_Group_Features: Used to define the features of an application
App_Name Feature_Text Feature_Position

KLM Label Maintenance 1
KLM Print Label 2
KLM Reprint Label 3

Access_Group_Names: Used to define an application's features for a group of users
Group_Id App_Name Group_Name Feature_List Access_Level

1 KLM Process Engr - BDA YYY
2 KLM Production Operator NYN
3 KLM Production Lead NYY

Access_Group_Users: Used to assign Users to Groups
Kiosc_Id Group_Id

1010 1
1020 2
1030 2
1040 2
1050 3

Access_Categories: Used as a lookup table for the application's broad categories, or scope
App_Name Categorty_Type Category_Value Category_ID

KLM Process Area BDA 1
KLM Process Area CIO 2
KLM Process Area PSG 3
KLM Process Area SNAP 4
OIT Configuration CIO 5
OIT Configuration PSG 6
KDE Configuration BDA 7
KDE Configuration PSG 8

Access_Category_Assigned: Used to assign categories to Groups
Category_ID Group_Id

1 1

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 9

2 1
1 2
2 2
3 2
4 2

2.3 Data Formats and Conversion

Labels will be stored in the database in LBL format (Text column in Labels table). Caching of ZPL format may
also be done for performance (ZPLText column in Labels table). Graphics will be stored in BMP format or other
LBL-supported formats and will have a column describing the format type in the graphics table.

2.4 Multiple Repositories and Caching

Caching and multiple repositories will be designed for Phase 2.

3. Use Cases
This section describes the actors and use cases for the KLM system. Actors are defined as the different users that
may interact with the system from a broad functional perspective. Usually actors are defined by their role in the
process that the system supports.

3.1 User Scenario Actors
Print-user – a user in this role will be able to perform use cases including: login, search, view, print, re-print, set
user options, and add a printer.

Editor, designer, and engineer – a user in this role will be able to perform use cases including: all operations
allowed to the print user plus

Repository administrator – a user in this role will be able to create new repositories (including importing and
exporting data), manage subscriptions between repositories, manage access permissions to the repository, and
generate reports. This user will also establish web services and verify application configuration (through end-to-
end operations such as printing a test label to a networked printer).

External application user – a user (or application) in this role will communicate with the KLM application
through web services or an integrated DLL mechanism to perform all KLM operations allowed to a print-user.

3.2 Use Cases
The use cases are performed by actors in the system and represent end-to-end scenarios that the end-user will spend
the majority of their time performing. The use cases usually map fairly closely to final QA test scenarios, though
particular operations within a use case may also be tested with specific test cases in unit test or integration/system
test plans.

3.2.1 Manual Print
1. Login to KLM application. Prompt user for KIOSC username and password. Use common KIOSC

login screens from common KIOSC DLL (if enhanced features are needed, let’s build it into the
common DLL). No generic logins allowed. Login process should return allowed feature set to the
application.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 10

2. Search for a label. Accept user inputs for key label metadata fields. Also take input for keyword
search. Use this information to return a set of labels. Return just the latest approved/released
versions (for Manual Print). Return both a list of labels and optionally thumbnail images. The KLM-
UI will narrow the labels a user may access based on the group information and site the user logs in
under. Further search criteria are provided to select a label based on creator, most recently assessed,
application used in, keyword, station_type, label_id, label_stock and graphic used.

3. View/preview a label – Present a view of the label (thumbnail?). Show the presaved thumbnail
(JPEG or other decided upon format) from the database. Do not use the List’N’Label OCX (would
require a license for each box).

4. Print the label – Assure that the prompts have been completed and print the selected label using the
print engine. Generate serial number;Add to audit log

5. Reprint a label – if metadata for requested label allows unrestricted reprinting then same as above
(Print use case). By default, disallow reprints. If reprint rules are allowed at manual station, enforce
them appropriately, including checking permissions for that user. If track reprints are not set to true,
then print same as above. If it is set, then label must be allowed for KLM manual printing, and user
must have reprint authorization.

6. Print bulk labels – Get the quantity from the user. Print that quantity of labels properly, advancing
auto-generated fields. Track quantity printed in case job is stopped. Provide means to stop printing.

7. Params from file – Complete prompts from a file. Advance to next line for each label. Key off
prompt names in top row. Use comma-separated file.

8. Printer management (networked or local). Use common interface that can be shared with other
applications. Have user set information about printer location (COM1, COM2, LPT1, etc.), baud
rates, and loaded stock size. Provide test functions that test communication and settings with the
printer(s). This would be program callable (see external application use cases). For user, provide a
test print function.

3.2.2 WYSIWYG Designer
1. Create a label (new one from scratch). A user must have the appropriate credentials to create a new

label in KLM. The List and Label OCX is initialized with a list of variables the user may work with in
the LnL Designer. The information for the variable must contain: 1) the variable name, i.e. prompt, 2)
sample variable content, and 3) the type of object the variable will apply to, i.e. a text box, a barcode,
a drawing, etc. The object types are LnL object references. The LnL OCX is initialized by the
LLDefineVariableStart and available variables are specified with LLDefineVariable or
LLDefineVariableExt methods. The LnL Designer is then invoked, the new label wizard may be
invoked prior to the designer or by the user selecting New from the Designer menu.

The user selects the target printer and the label stock from the wizard. The user selects and positions
label objects on the label template, enters the object content by specifying text, a filename, or
selecting a variable defined for the object type. The user assigns a name to each object type, both
static and variable objects. The object name is the same as the variable name for variable types. The
label is saved as a label file having a .lbl file extension. The label is saved in a default directory,
specified before the designer is invoked. If the label is saved in any place other than the default
directory, the label will not be assigned a label_id and rev and further db entries will not be made.
The label proceeds through the check-in process after approval has been given.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 11

2. Create a clone of a label (copied from the template of another label). A user requires the same
credentials to copy a label as to create a label. The same variable definition must occur for the LnL
OCX as Create New label if this is a new instance of the OCX. The user selects a label using the
search criteria and opens an existing label in the designer and either a) saves the current label with a
new filename, or b) copies some or all of the label objects from the existing label, creates a new label
and pastes the objects into the new label. The label is saved with a new filename in the default
directory and the label is then submitted to the approval and check-in process.

3. Edit a label. A user must have appropriate credentials to edit a label. The label is selected by the
search criteria. If the user selects Edit from the KLM-UI, The KLM-UI will provide a display of
labels currently checked out by the current user and provide the capability to undo the checkout or
submit the label for check-in.

The label is and designated a status_id of edit (numeric equivalent) when the edit button or menu item
is selected (only if the label is not already under edit). The labels table is updated with an entry
specifying a new rev, which is editing, status_id and modified_time_stamp. The user is notified by
display or email of the label_id and rev they must/should enter in the file description when they use
‘save as’ in the LnL designer. The LnL Designer is invoked with menu items enabled to save or save
as, with the default directory specified. Saving the file in any other location will essentially render
void and useless any changes made to the label.

4. Check out a label. A user must have appropriate credentials to check out a label. The user selects the
label he/she wishes to checkout. An entry is made in the Labels table with a new Label_Id, indicating
the label status is being edited and by whom. If the label is already checked out, indicated by an entry
with Status_Id indicating under edit, the user is notified on the display. One person can only check
out a label at a time. The LnL designer is invoked with the specified label. The user may save the
label in the default directory until ready for approval / check-in. Saving the label in the default
directory will cause an entry in the database to be created, parsing the .lbl file and entering meta-
information relevant to the label.

5. Check in a label. The .lbl file is parsed for all variables referenced in the file. The variable name
must be present in the Prompts table as Prompt_Text. If there are any missing variables, the label is
rejected for check-in. The label description is parsed for the label_id and label_rev and checked
against the db for being under edit by the submitter (current user) or assigned a new label id and rev
and Meta information is entered. The label name is verified unique. Meta information must be entered
in the KLM-UI because the label printer definition file is a combination of text and binary and is
reserved for modification by LnL. The .lbl and .lbp files are saved as blobs in the database or saved
to a specified directory for storage/archival.

6. Versioning labels – edit, approve; make the label the one for production! Audit log

3.2.3 External Application

External applications, for the purpose of this document, are defined as KIOSC system applications which are not
intrinsically parts of the KLM system, but which may call KLM in order to print labels as part of a production process. Non-
production users should print labels through KLM’s manual interface. Examples of external applications would be AOP,
KCI and KDE. (Note that this is not the complete list of allowed external applications.)

9. Identify (AppName, UserId, ComputerName)
The calling application executes the Identify method and passes the required parameters, before
making any other calls to the KLM interface. KLM will process the Identify method by: Ensuring that
all required parameters are present
• Checking that a database entry exists for the passed ComputerName – if found, KLM will cache

the printer information for use during the PrintLabels call

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 12

• Caching the passed information so that it is available for future audit logging purposes.
• If any parameters are missing in the Identify call, or if the passed ComputerName does not have a

defined printer setup, an error will be raised by KLM with the appropriate descriptive text. Note:
It would be possible, at this point, for KLM to check a list of authorized applications, perhaps
from a database table, to determine if the application was, in fact, permitted to call KLM, but this
functionality is not planned at this time.

10. PrintLabels (SiteCode, StationType, Product, Optional OptionPN, Optional OptionRev, Optional
<Other Parameters>) The external application calls the PrintLabels function and passes the
appropriate parameters, which are specific to the process step being performed. Note that the calling
routine may pass more parameters than are actually required to print the labels needed at the process
step.
• KLM uses the available parameters to compose a SQL statement, which it executes against the

local labels database. It then evaluates the query results. If no matching labels are found, the
function return value is set and the routine exits.

• If one or more labels are found, KLM will check the required parameters for each of the labels
against the list of parameters passed by the calling program. If any required parameters are
missing, the function return value is set and the routine exits. If any serial number generation is
required KLM will execute the appropriate stored procedure to acquire the data from the
database. Note that if multiple labels specify the exact same "type” of generated serial number
format, all of the labels in that call will receive the same serial number.

• KLM passes the label file, along with the required parameters and printer information, to the
labels print driver. The print driver will determine which labels are printed to which printer based
on either label stock size, port number or printer name (TBD).

• The Ids of all labels printed, as well as their parameter values will be cached for possible label
reprints. (This information will be cleared on each new call to the PrintLabels function.)

• Returns: Success if at least one label was found and printed or Failure if no labels were found for
the specified process step, or if the passed parameters were insufficient to print the required
label(s). This routine will also have to provide a mechanism for returning to the calling program
all serial numbers (and associated serial number tracking_ids) that were auto-generated during
the course of printing the label(s).

11. Reprint Label (AuthorizingUserId) If no previous call was made to the PrintLabels function, or if

the passed AuthorizingUserId is missing or invalid, the routine will simply set a return status and exit.
• If a single label was printed as a result of the previous PrintLabels call, that label is immediately

reprinted. If multiple labels were printed, KLM will display a form on the calling machine
showing thumbnail views of each of the labels that were just printed and will allow the user to
select which label (or labels) are to be reprinted. The selected labels will then be reprinted.

• KLM will make a log entry for every reprinted label and will associate the passed
AuthorizingUserId and any label serial number information within the reprint log.

• Returns: Success if at least one label was found and printed, or Failure if no labels were printed
due to inadequate credentials or because no labels were available for reprint.

12. Printer Setup (ComputerName, AuthorizedMaintenanceId) As a result of the PrinterSetup call,
KLM will display a form on the calling machine that allows the user to specify:

• Printer Name(s)
• Printer Type(s)
• Port(s)
• Setup String(s) [such as: “9600,8,n,1”]
• Network address (for networked printers)
• Label Stock Size(s)

Any existing information for the specified ComputerName (found in the KLM database) will be
pre-entered on the form. Once all new or changed information has been provided and has passed

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 13

validation, it will be registered into the KLM database to be used for future label printing
functions.

13. TestPrinter (ComputerName, PrinterName/PortNo) The remote program calls the TestPrinter routine

and passes all of the required parameters. KLM checks its database to determine the label stock size
loaded into the specified printer. KLM then selects the appropriately sized “test” label and sends it to
the print driver. Returns: Success if a label was printed, or Failure if no labels were printed due to
unknown computer name, bad printer name or port number or failure to find a test label of the
appropriate size.

3.2.4 Administrative Use Cases

14. TBD – Phase 2) Security management will be defined in Phase 2. Possibly including:
add/modify/delete users, groups, roles, permissions; audit log; integrated with KSecurity? Manage
client-caching strategies, adding/removing repositories/sites, reporting on label usage (reprints, etc.),
view/filter audit log, archiving unused labels and log entries, import/export raw label tables to
external apps.

15. Delete a label. Audit log.

16. Add searchable keywords for a label. Auditable.

17. Remove searchable keywords for a label. Auditable.

18. Add category association for a label. Labels may appear at more than one place in the hierarchy.
Select the label, then select when in the tree view the label should be added. Need to be able to view
the whole tree, plus the set of associations for a given label. Auditable.

19. Remove category association for a label. Select the label; get a list of the categories it is in. Select
one category and remove. Auditable.

20. Change category hierarchy. Be able to add/delete/rename tree view category titles. Auditable.

21. Change the default stock size used for a label. Auditable

22. Add stock type. Auditable

23. Remove stock type. Auditable

24. Update stock type… Auditable

25. Add available stock size. Auditable

26. Remove available stock size. Auditable

27. Modify/update available stock size. Auditable.

28. Add stock vendor. Auditable.

29. Remove stock vendor. Auditable.

30. Change access permissions for a label (who can use the label). Auditable

31. Change the ability to do reprints or not on a label. Auditable.

32. Change the associated part number, BOM part number, etc. What about the status flag? Or is this pat
of versioning? Change the product site and line station for a label. Auditable

33. Change associated product/mapped product for a label. Auditable.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 14

34. Define prompts for a label and verify that they are formatted correctly when printed. What are all the
prompt types? Auditable.

35. Manage available serial numbers and generation process for a label.

4. Deployment Constraints
This section describes the target platform of the KLM application and deployment considerations. The first
subsection describes the current hardware and software platform that are the minimum supported target platform
for KLM. The second subsection describes the platform supported for various .NET technologies. The final
subsection describes the draft deployment process for the KLM application.

4.1 Target Platform Description
The KLM rich client should run on a PC with at least 16MB RAM, 133MHz, etc. with Windows Xp/NT4
Pro/etc…

The KLM web client should run on any machine with Internet Explorer 5.01 or higher…

The KLM web service… converter, repository, etc….

4.2 .Net Platform Description
The .NET platform is supported over a wide variety of Microsoft platforms. Some platform configurations provide
full support whereas others provide only partial (or degraded) support.

The basic .NET Framework SDK (including ADO .NET, Windows Forms, and XML web service clients) is
supported on the following platforms (Internet Explorer 5.01+ and Windows Installer 2.0 are also required):

• Windows 2000 (Pro, Server, Advanced Server)

• Windows NT 4 Workstation or Server with Service Pack 6a+

• Windows Millennium Edition

• Windows 98, Windows 98SE, and

• Windows XP (Home or Pro).

To host ASP .NET or XML web services, the server must be capable of IIS 5.0+ and running Windows 2000 (Pro,
Server or Advanced Server, with Service Pack 2) or Windows XP Pro with MDAC 2.7+.

To access SQL Server using the SQL Server .NET Data Provider, the client must be capable of MDAC 2.6+.

General hardware requirements vary by client (Windows Forms and Windows Services) or server. Client
machines should be Pentium 90MHz+, 32MB+ RAM (required), and 90MB+ (recommended). Server machines
should be Pentium 133MHz+, 128MB+ (required), and 256MB+ (recommended).

4.3 Deployment Process

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 15

The web client application requires IIS 5.0 o higher and is deployed with the MSI package. The rich client requires
the CLR and connectivity to a SQL Server repository…

The following deployment scenarios are envisioned (Visios): XYZ parent site (Colorado Springs, Penang,
Dundalk), connected online vendor, disconnected vendor, and single workstation mode.

The CLR can be installed separately as the Windows Component Update (from the Visual Studio installation media
or the merge module, or SMS push…)

Figure 1. Disconnected vendor scenario.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 16

Vendor Server
Windows NTS
Windows 2000 Server
Windows .NET Server

Print engine
assembly

Local Zebra Printer

Networked Vendor or
Child Repository Model

Local repository
(SQL Server)

Manual Label
Printing

Application (EXE)

Other local
applications

(EXE)

WYSIWYG Editor
Application

(EXE)

Other KLM
assemblies

(security, etc.)

Could be a Terminal
Services model

Quantum “Master” Server
Windows NTS
Windows 2000 Server
Windows .NET Server

Web service (repository access)

KLM assemblies
(Security, data access)

Master label
repository (SQL

Server)

Cache (timestamp) checking
Subscription management (dynamic updates
to distributed “child” repositories)

Data access now can check a
“master” repository for updated
labels or broader searching

Figure 2. Network-aware vendor.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 17

Line Workstations
Windows NT Workstation
Windows 98
Windows 2000 Pro
Windows Xp

Print engine
assembly

Local Zebra Printer

Quantum Deployment

Manual Label
Printing

Application (EXE)

Other local
applications

AOP, KDE, etc

WYSIWYG Editor
Application

(EXE)

Other KLM
assemblies

(security, etc.)

Quantum “Master” Server
Windows NTS
Windows 2000 Server
Windows .NET Server

Web service (repository access)

KLM assemblies
(Security, data access)

Cache (timestamp) checking
Subscription management (dynamic updates
to distributed “child” repositories)
Checkin/out interface
Security checking interface
Query and getLabel interface
Timestamp check on labels

Data access now can check a
“master” repository for updated
labels or broader searching

Dundalk Master
label repository
(SQL Server)

Panang Master
label repository
(SQL Server)

Colorado
Springs Master
label repository
(SQL Server)

Replication to ensure all in sync
Clustering to ensure availability
Possibly additional replication points for vendors to connect to

Local
XML File
Cache

Data access
assembly

Client can bypass web services
for direct database access (ADO)

Web service is
optional for

clients that use
an intranet
connection

Local applications can use CCW/COM Interop to do direct
calls, can use web service interface, or can use native

.NET assembly loading (if the caller is also in .NET)

Dynamic updates can be:
1 - always downloaded (when avail)
2 - notify me and I will select to download
3 - I will manually query for updates (pull)

Import conversion
from

other formats

Figure 3. XYZ Master Repository Deployment.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 18

5. Presentation Services Overview
This section describes the user interfaces provided as part of the KLM project. The user interfaces are described by
subsection for the WYSIWYG editor (rich-client, also including print-only features), the web-enabled print-only
application, the conversion utility, and installation package. Each subsection has initial screen mockups,
descriptive text, application configuration file format notes, data validation notes, and pseudo-code for interactions
with business services (described in the following section).

WYSIWYG (rich client) editor
The rich client editor (main interface) will be a Windows Forms EXE providing the user interface elements for
Manual Print and WYSIWYG Editor use cases.

Project namespace: XYZ.KLM.Application

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

• XYZ.KLM.Search

• XYZ.KLM.Security

• XYZ.KLM.Editor

The Windows Form project supports a startup method, menu item and toolbar click methods (event handlers), a
close method, and has a specified configuration file format.

The initial screen will look like Figure 1.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 19

Figure 1. Initial KLM screen.

The main screen is divided into display areas for title bar, menu bar, tool bar, search panel, search results panel,
selected item display panel, and status area. The application title bar has the name of the application and
maximize/minimize buttons. The menu bar has entries for the events defined below. The toolbar has icons for
activating menu items as specified below.

The search panel is displayed on the left side of the main form (shown above) and allows the user to select a
criteria and value(s), allows the user to add the criteria to the search, and allows the user to initiate the search
(populating the search results panel).

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 20

Figure 2. Search tab and query definition (details) tab showing active search criteria.

The search results panel displays a list view of the results of the SQL query, including the name and TBD metadata
on the returned label set. When the user selects one of the list view items, the selected item display panel is
populated with the details of that label. The search button causes the search function to ExecuteQuery (in the
search component); the clear button causes the ClearSearchCriteria method to execute in the search component.
Selecting “Prints Locally” adds search criteria for selecting only labels that can be printed on this computer (labels
that match the printer types attached to this machine and also match stock sizes loaded in those specific printers).

The selected item display panel is a tabbed display with panels for selected item preview and details (e.g.,
metadata).

Startup - login to the application and load main form

Inputs:
• Optional pointer to application configuration file (String, command line argument)

Processing:
1. Get Site_code, KIOSCRef connect string, and KLM connect String and retain in memory

o If the path to the configuration file was specified on the command line, then read
from there. (If a read error is encountered, write to the application log, show a
message box saying an error occurred, and exit the application.)

o Else check the current application path for the configuration file; if not there, log
the error, present a message box, and end the application.

2. Instantiate the security class (see below) and call validate method to get user credentials and
authorization level.

o If “no access” returned, then show a message box with “You’re not authorized to
use this application” and exit the application. Retain the User Id and Authorization
level in memory for later use (object?).

o Otherwise show the splash screen while loading main form
 Show splash screen (below)

Search criteria
definition panel (the
active SQL query)

Search results data list
with title and
description of labels
found

Search criteria entry
panel (add new to
search criteria
definition)

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 21

 Load main form
 Hide splash screen on return from load main form
 Show main form

3. Load main form (from above)
o Set the visible menu items visible based on authorization level (see table below)

 General User: View, Print, Bulk Print, Reprint
 Maintenance User: All of General User menu items plus Printer

management
 Reprint Authorize: All of the maintenance user menu items
 Label Creator: All of reprint authorize menu items plus New (Label),

Copy, and Edit
 Label Approver: All of label creator menu items plus Check-in
 Developer: All of the label approver menu items plus TBD possible app

debugging features
o Enable menu items (if visible) for initial form load

 Search, PrinterManagement, New (Label), Exit, Help
o Instantiate search class and get search criteria to load in combo box
o TBD use ktimeservice unless we go with server side time stamps

Outputs:
• Main application form displayed

Figure 2. Label menu items.

Menu Item: Label New

This menu item is always available authorized user credentials. This calls the LNLDesigner component
(instantiated at application startup) to CreateNewLabel.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 22

Menu Item: Label Copy

This menu item is only enabled when a label is selected from search results. This calls the LNLDesigner
component to CopyExistingLabel.

Menu Item: Label Edit

This menu item is only enabled when a label is selected from search results. This calls the LabelManager
component to CheckOutLabel and then (if successful) calls the LNLDesigner to EditExistingLabel.

Menu Item: Label Check-in

This menu item is only enabled when a versioned label is selected in the search results and the user has “Approver”
authorization. Updates the status on the labels to reflect “Approved” or “Released”. This is the only metadata item
allowed changed with this command. See screen below.

SearchCriteriaAdded Event

This event is raised when the user selects to add new search criteria. This event causes a call to GetSearchCriteria(
) in the Search component and rebinds the resulting dataset to the query definition panel.

Configuration file structure

The application configuration file looks like:

<application>
 <configuration>
 <add key=”siteCode” value=”32”>
 <add key=”KIOSCConnectString” value=”server=foo;database=k2dev;uid=sa;passwd=”>
 <add key=”KLMConnectString” value=” server=foo;database=k2dev;uid=sa;passwd=”>
 <add key=”LNLObjectTypes” value=”barcode;text;”>
 </configuration>
</application>

Installation package
The installation package is a Microsoft Installer package built for the rich client (WYSIWYG editor), web
application interface (print-only), the basic web service for integration, and the repository deployment. The user
selects which type of install/uninstall to perform…

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 23

6. Business Services Overview
This section describes the business logic components (assemblies) and the web services interface for the KLM
application. The business components will be designed in separate functional specifications but the initial
interfaces and interactions will be specified in this document.

LNLDesigner component
The LNLDesigner component will be a DLL providing methods to instantiate, control, and respond to events for
the List and Label OCX.

Project namespace: XYZ.KLM.Editor

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

The class supports the following methods:

Constructor

Processing:
4. Instantiate the LNLDesigner, map event handler for Close event.

5. Set component status to “No label”

CreateNewLabel

Inputs:
• None (menu click)

Processing:
6. Get the application name from the user using a dialog box (shown below)

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 24

7. Once the application name is selected, call the Data Access component and get the list of

prompts, fill in the checked list box. Read the application configuration file for List and
Label types (for drop down list). If the user changes the application name selection then
clear the LNL variable name buffer (LLDefineVariableStart).

8. Validate that each checked prompt has an LNL object type. Once the user selects OK, use
the List and Label variable buffer DLL to pre-load the variable names for the OCX.

9. Set the component state to “New Label”.

10. Invoke the New Label Wizard (in LNL).

11. Invoke the designer (Show).

Outputs:
• None

OnListAndLabelDesigner Close (mapped event)

Inputs:
• LBL file name
• Component state

Processing:
12. When the user clicks “Exit” on the List and Label designer, the LBL file will be written to

c:\temp or KLM application temp directory… The designer window closes
13. The application will check the application temp directory for the LBL file, and if not found

allow user to browse to save location
14. The application will prompt the user for label metadata (if the component state is “Edit

Label” then get current metadata from database). Need screen snapshot of Metadata screen.
15. The application parses the LBL file for variables and prompts
16. Generate a JPEG image of the LBL (if one doesn’t already exist) using the LNL DLLs.
17. LBL, JPEG, prompts, and metadata are saved to the database. If the component state is

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 25

“New Label”, then insert the LBL text in a NEW row in the Labels table (revision = 1). If
the component state is “New Label” then add a row to Label_Checkouts for the current user.
If the component state is “Edit Label” then insert the LBL text/graphic in a NEW row in the
labels table (revision = previous revision + 1) with status checked out (to current user).

18. Delete the LBL and JPEG files on disk.
Outputs:

• None

CopyExistingLabel
Inputs:

• Selected label id
Processing:

19. Get the application name from the user using a dialog box (shown below). The default value
is the application of the original label.

See picture above.

20. Once the application name is selected, call the Data Access component and get the list of
prompts for the application area, fill in the checked list box. Read the application
configuration file for List and Label types (for drop down list). If the user changes the
application name selection then clear the LNL variable name buffer
(LLDefineVariableStart).

21. Validate that each checked prompt has an LNL object type. Once the user selects OK, use
the List and Label variable buffer DLL to pre-load the variable names for the OCX from the
selected prompts.

22. Set the component state to “New Label”

23. Invoke the designer (Show).

Outputs:
• None

EditExistingLabel
Inputs:

• Selected label id (assumed checked out)
Processing:

24. Get the existing LBL file from database to application temporary folder, plus prompts, and
graphics.

25. Get the application name from the user using a dialog box (shown above). The default value
is the application of the original label. Populate the prompts list from the existing prompts in
the database.

26. Once the application name is selected, call the Data Access component and get the list of
prompts for the application area, fill in the checked list box. Read the application
configuration file for List and Label types (for drop down list). If the user changes the
application name selection then clear the LNL variable name buffer (LLDefineVariableStart)
and re-clear the prompt list.

27. Validate that each checked prompt has an LNL object type. Once the user selects OK, use
the List and Label variable buffer DLL to pre-load the variable names for the OCX from the
selected prompts.

28. Set the component state to “Edit Label”

29. Invoke the designer (Show).

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 26

Outputs:
• None

Application integration component
The application integration component will be a DLL providing the CallableInterface class with methods for
remote applications to perform key KLM functions. External applications are trusted and do not need to be
authenticated.

Project namespace: XYZ.KLM.CallableInterface

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

The class supports the following methods:

Identify

Inputs:
• AppName (String) – the application name of the caller
• User Id (Integer) – the user identifier of the caller (trusted)
• Computer Name (String) – the physical computer location of the caller
• Site Code (String) – the site code of the caller

Operations:
1 Validate input method parameters (for non-null strings or negative/zero userid)

1.1 Throw “Missing parameter error” if not valid
2 Connect to the KLM database

2.1 Call Data Access method Connect() with the site code parameter (to determine
which connect string is used)

3 Get printer parameters for given computer name
3.1 Call Data Access method GetPrinterDetailsForComputer()
3.2 If no printer details available, throw “Printer not defined error”

4 Add all items to cache for future calls
4.1 Cache is a private member variable, m_Cache, of type Hashtable. Key-value pairs

are inserted for the input parameters and the DataTable returned with printer details.
Outputs:

• Return Code (Boolean) – success or failure of getting the printer details
• (Cache of Inputs)
• (Cache or Printer Parameters)

Exceptions:
• Missing required method parameter
• Could not connect to database (passed up from DataAccess component)
• Printers not defined for specified computer name
• Could not create cache (memory violation)

Database Tables Needed:
Printers (table name) Data type
ComputerName Nvarchar (50)
PrinterName Nvarchar (50)
PrinterType UniqueIdentifier – FK to PrinterTypes table
StockId UniqueIdentifier – FK to AvailableStock table
NetworkId Nvarchar (200)

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 27

PrintLabels

Inputs:
• StationType (Int32, short) – the station type of the caller
• Product (string) – the product of the caller
• Option_PN (string) – the option part number
• Option_Rev (string) – the revision of the option part number
• <other parameters TBD>

Operations:
1. Validate method parameters (non-null strings, etc.)
2. Query database to determine labels to be printed at this station/process step

a. If no labels found matching search criteria, throw “no label defined at this station
error”

3. Match passed parameters to required parameters
Outputs:

• Return Code (Boolean) – success or failure of ?
Exceptions:

• Missing required method parameter
• Could not connect to database (passed up from DataAccess component)
• No label defined at this station
• Missing required label parameter

LabelManager component
The label manager component will be a DLL providing general label management functions.

Project namespace: XYZ.KLM.Editor

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

The class supports the following methods:

CheckOutLabel
Inputs:

• Label id
• User id

Processing:
30. Check if an entry exists in database checkout table

o If the checkout user matches the requested user id for checkout
 Return status “Already checked out”

o If a checkout user exists but does NOT match the requested user id
 Return status “Checked out to another user”

o Else
 Insert row in checkout table for requested user id (must be transacted)
 Return status “Checkout success”

Outputs:
• Checkout status enumeration (success, failed/another user, failed/already checked out to you)

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 28

Security component
The security component will be a DLL providing the Security class with methods to authenticate and authorize
users in the KLM system.

Project namespace: XYZ.KLM.Security

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

The class supports the following methods:

Validate - Authenticate and Get Authorization level

Inputs:
• Connect String to site specific KIOSCRef database

Processing:
31. Prompts user for user id and password (see screen below)

o Mask password word

32. Performs authentication and Obtains authorization level
o Encrypt password (import current KIOSC encryption scheme)
o Query database with user id and encrypted password for authorization level

 If no records provide up to 3 retries
 Else (after 3rd retry), show a message box: “Come back when you

remember your password.”
33. Map to enumerated type and return output

Outputs:
• Enumerated value of authorization level: Developer, Label Approver, Label Creator, Reprint

Authorize, Maintenance User, General User, No Access. Note these maybe expanded to
accommodate separate process engineering groups or other non-hierarchical relationships.

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 29

Search component
The search component will be a DLL providing the Search class with methods to find labels and prompts for
specified metadata (keywords, id’s, titles, etc.).

Project namespace: XYZ.KLM.Search

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM.DataAccess

The class supports the following methods:

Constructor

Inputs:
• Connect string to KLM database (String)

Processing:
34. Set an internal variable to store the connect string
35. Call ClearSearchCriteria()

GetSearchCriteria

Inputs:
• Authorization level (some queries don’t get a choice on label status)

Processing:
36. Create dataset from scratch with name column (maybe others TBD)
37. Insert rows in dataset for: Station Type(s), Site Code, Stock Size, Category, Customer,

Graphics, Bar Code Type, Product, Part No, Part No Rev, Label Name, Label Rev
38. Call AddSearchCriteria() for certain search criteria that are applied by authorization level

o “Status” = “Approved” for regular Print User
Outputs:

• Data set of search criteria with a column called “Name” in a table called “Criteria”

GetChoices – for populating a checked list box on the display

Inputs:
• Criteria name (string)

Processing:
39. Create an empty dataset from scratch with value column and checked column (bit)
40. Select the values from the appropriate table in the database based on the criteria name:

o Station Type, Site Code, Stock Size, Category, Customer, Bar Code Type, Product,
Part Number, Part Number – Revision are looked up in database

o For label revision, label name, graphics name – these are “LIKE” criteria and return
an empty dataset

Outputs:
• Data set of criteria values and whether they are checked by default (if the criteria is a select-

from-list type)

GetSearchQuery - for populating Query Definition panel

Inputs:
• None

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 30

Processing:
41. Return a reference to the active search criteria dataset

Outputs:
• Data set of search criteria selected in the active search collection (columns for criteria name,

type of query condition (LIKE, IN), and values)

AddSearchCriteria

Inputs:
• Criteria name (string)
• IsLikeQuery (Boolean) – specifies whether the value should be converted to a LIKE query in

the SQL string (if False, then the equals operator is applied)
• Value (string)

Processing:
42. Add a row into the active search criteria dataset for the inputs specified
43. Raise a SearchCriteriaAdded event to the user interface element (to repaint with new query

definition panel contents)
Outputs:

• Data set of search criteria with a column called “Name” in a table called “Criteria”

ExecuteSearch – for populating Query Results list

Inputs:
• None

Processing:
44. Build a SQL query from the active search criteria dataset

Outputs:
• Data set of search results with columns for label name and TBD other label attributes

ClearSearchCriteria

Inputs:
• None

Processing:
45. Create dataset from scratch for active search criteria with columns for criteria name, type of

query condition (LIKE, IN), and values
Outputs:

• None

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 31

7. Data Services Overview
This section describes the data access component of the KLM replacement project and the KLM repository
schema. The data access component will be designed in a separate functional specification but the initial interface
and interactions will be specified in this document. The repository discussion will provide general guidelines and
schema layout and a separate diagram will show the detailed schema including all tables, stored procedures, etc.

7.1 Data Access Component
The data access component will be a DLL providing the DataAccess or class with methods for all KLM
components to use the KLM repository (database). The caller is assumed to have been authenticated with the
security component, if required.

Project namespace: XYZ.KLM.DataAccess

Project Type: DLL Windows Forms EXE Web service WebForms app

The class uses the following other components:

• XYZ.KLM???

The class supports the following methods:

Connect()

Inputs:
• Site Code (String)

Operations:
5 Validate that a site code was passed in

5.1 Throw “Missing parameter error” if not valid
6 Determine the connection string from the application configuration file

6.1 If not found, select the default connection string
7 Connect to the database using the connection string

Outputs:
• Return code (success/failure)

Exceptions:
• Missing required method parameter
• Could not connect to database

GetPrinterDetailsForComputer()

Inputs:
• ComputerName (String)

Operations:
8 Validate that a computer name was passed in

8.1 Throw “Missing parameter error” if not valid
9 Connect to the KLM database, if not done already

9.1 Call Connect () with the site code parameter
10 Get printer details for the given computer name

10.1 Using a T-SQL SELECT statement, get a DataTable of all printer columns in the
Printers table matching the ComputerName

Outputs:
• DataTable

Exceptions:
• Missing required method parameter
• Could not connect to database

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 32

GetAllApplications()

GetPrompts ForApplication (appName)

AddNewLabelToRepository() – saves a new row with Revision = 1

UpdateLabelInRepository() – saves a new row with Revision = Revsion + 1

AddNewLabelGraphicForLabel()

DeleteAllLabelGraphicsForLabel(labelId)

AddNewLabelMetadataToRepository()

CreateNewLabelFromExistingLabel()

UpdateExistingLabelMetadataToRepository()

QueryForLabels(stationId)

QueryForLabels(SQLStatement) – the main query from search panel, T-SQL assembled in search component

GetLabelCheckouts(labelId)

CheckoutLabel(labelId) – inserts a row in the checkout table

GetUserAuthorizationLevel(userId, password) – also does the encryption in this function

WriteApplicationEventLog()

GetGraphicsForLabel(labelId)

GetLabelKeywordsForLabel()

AddLabelKeywordsForLabel()

AddPromptMappingForLabel()

DeletePromptMappingForLabel()

UpdateLabelStatus()

ReadApplicationConfigurationSetting() – from database table (not app config file)

7.2 File Access Component
The file access component will be a DLL providing methods for all KLM components to read and write files on the
local drive, including the configuration file. The caller is assumed to have been authenticated with the security
component, if required.

Project namespace: XYZ.KLM.DataAccess

Project Type: DLL Windows Forms EXE Web service WebForms app

The class supports the following methods:

GetFileContentsAsBinary() - as Byte[], for thumbnails and JPGs

GetFileContentsAsText() - as string, for LBL content parsing

FileExists(strPath) returns boolean

DeleteFile(strPath)

GetApplicationTempFolder()

GetDefaultConfigurationFileName() – returns the path to the default configuration file

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 33

GetConfigurationFileValue() - takes a string key value and looks up the string value for that key (used for initial
site code, and connect strings to KIOSC ref and KLM databases)

GetConfigurationFileName() – returns the actual path to the configuration file being used (could be passed in by
command line).

7.3 Log File Component
The log file component will be a DLL providing methods for all KLM components to write to the application log
file. The caller is assumed to have been authenticated with the security component, if required.

Project namespace: XYZ.KLM.DataAccess

Project Type: DLL Windows Forms EXE Web service WebForms app

The class supports the following methods:

Constructor

Inputs:
• File path and file name (String, optional)

Operations:
1. Set an internal variable to hold the file stream name (defaults to “applog.xml”)

WriteLine()

Inputs:
• Message (String)

Operations:
11 Validate that a site code was passed in

11.1 Throw “Missing parameter error” if not valid
Outputs:

• Return code (success/failure)

KLM Project Version: 1.0
KLM Replacement Functional Spec Document Date: 4Apr02

 Page 34

7.4 Data Repository
The KLM repository is implemented in two flavors: a local XML file storage mechanism, and a SQL Server
schema.

The SQL Server schema has the following tables (the official VISIO diagram is stored in SourceSafe under
$:\database\diagrams):

Insert text to describe tables here – general usage, sample data, column types, keys and indexes

Multiple repositories may exist within an installed KLM system. Consistency between databases is maintained
through the caching mechanism described above. This is implemented by the following SQL scheduled jobs…

All database tables will have audit fields that are automatically filled in by defaults. These columns include a
create user id, create timestamp, last-modified user id, and last-modified timestamp. Additionally, the database

contains audit tables for logging print events (and parameters), and security events…

