
F/A-18 Data Visualization Project
CSE 498: Boeing Team – Fall 2004

Boeing Integrated Defense Systems
Technical Specification

Adapted from technical specifications written by previous semesters

Group 1:
Andrew Shulman

Jonathan Yen
David Nelson
Lun Cheung

Table of Contents
Introduction……………………………………………………. 4
Requirements and Possible Modifications..................................... 4
Flight Visualization Dialog …………………………………… 5
 Class CFlightVisDlg……………………………………….. 6
Database Access Class……………………………………….... 13
 Struct FIREntry…………………………………………….. 14
 Class CFIRData……………………………………………. 14
Visualization Package Wrapper……………………………….. 19
 Class CVisClientsWrapper…………………………………. 22
MSU Visualization…………………………………………….. 23
 Class CVisClient…………………………………………… 24
 ActiveX Visualization Controls……………………………. 25
 Heads Up Display (HUD)………………………………. 26
 Plane visualization window……………………………... 30
 Ground Proximity Indicator (GPI)……………………… 35
 Flight Track View (FTV)……………………………….. 38
Missouri-Rolla Visualization………………………………….. 42

Figures and Tables
 Figure 1 Sequence Diagram of Data Flow from FlightVisDlg to Individual DLLs….. 4
 Figure 2 FlightVisDlg State Transition Diagram……………………………………... 5
 Figure 3 Global Data………………………………………………………………...... 12
 Figure 4 FIRData Table……………………………………………………………….. 13
 Figure 5 - FIRData Parameter Names…………………………………………………... 13
 Figure 6 - Struct FIREntry……………………………………………………………… 14
 Figure 7 - Struct Function ……………………………………………………………… 19
 Figure 8 Sequence Diagram of GetFunction() and ExecuteFunction() Methods……... 20
 Figure 9 - Sequence Diagram of VisClient Interactions with FlightVisDlg and DLLs... 21
 Figure 10 - Sequence Diagram of MSU Visualization…………………………………. 23
 Figure 11 - Sequence Diagram of Missouri-Rolla Visualization………………………. 42
 Table 1 CFlightVisDlg Methods……………………………………………………… 6
 Table 2 CFlightVisDlg Members…………………………………………………….. 10
 Table 3 CFIRData Methods…………………………………………………………... 14
 Table 4 CFIRData Members …………………………………………………………. 17
 Table 5 – CVisClientsWrapper Methods………………………………………………. 22
 Table 6 - CVisClientsWrapper Members………………………………………………. 23
 Table 7 – CVisClient Methods…………………………………………………………. 24
 Table 8 – CVisClient Members………………………………………………………… 24
 Table 9 CHud Methods……………………………………………………………….. 26
 Table 10 – CHud Members…………………………………………………………….. 29
 Table 11 CPlane Methods…………………………………………………………….. 30
 Table 12 - CPlane Members……………………………………………………………. 33
 Table 13 CGPI Methods………………………………………………………………. 35
 Table 14 - CGPI Members……………………………………………………………… 37
 Table 15 CFlightTrackView Methods………………………………………………… 38

 Table 16 - CFlightTrackView Members……………………………………………….. 40

Introduction:

 The F/A-18 has an MU (Memory Unit) aboard during flights, as well as pre and post-
flight. Data is collected and recorded at regular intervals, based on trigger conditions – many are
recorded periodically while in flight. Types of recordings include, but are not limited to BIT
(Built In Test) data, Cautions/Warnings/Advisories, discrete inputs, flight control data, engine
data and maintenance codes. With an ICD (Interface Control Document) for the recorded data,
various reports are generated for the different types of recordings.

This data is often used to help maintainers or engineers determine failure conditions,
perform safety or mishap investigations, training and many other uses. The goal of this project is
to take a related data set, parse out the data, and create several selectable displays, which
visualize the data.

This project was previously done by Capstone Classes at Michigan State University
and at University of Missouri at Rolla. This project is to build on the original application,
deleting certain facets and adding additional functionality.

Requirements:

1.Given latitude and longitude positions, create a moving map with real terrain underneath.
2.Implement a 3D flight track showing track and altitude.
3.Create a common interface so that our visualization module works with the data feeding

application from Rolla and vice versa (If Rolla is in participation)
4.It must run on Win98, NT, 2000, and XP with recommended computer specs of 1GHz with

32M 3D graphics card and 256M RAM.

Possible Modifications:

•Ability to start visualization at any point in the file.
•Optional start/stop time for looped playback
•Optional frame by frame playback from a given time.

VisClientsWrapper DLL Implementing IVisClient

SetFrame

FlightVisDlg

SetFrame

Another DLL Implementing
IVisClient

Return S_OK

SetFrame

Return S_OK

Return()

Figure 1 – Sequence Diagram of Data Flow from FlightVisDlg to Individual DLLs

The following technical specification details the interactions and functions of each of

these classes and those specific to the MSU Flight Visualization display windows classes.

Flight Visualization Dialog

 The Flight Visualization dialog is implemented by the CFlightVisDlg class.
CFlightVisDlg holds a reference to a CFIRData object, allowing it access to the flight data. The
class spawns two separate threads of execution, which run in parallel with the main thread. One
is responsible for passing the information to the VisClient objects through the
VisClientsWrapper objects to prompt the visualization window components to update and
redraw themselves and the other is for querying the database and updating the event value buffer.
The main thread handles user messages, such as mouse clicks and menu bar options. A global
critical section object, CCriticalSection, is used to allow access to shared variables to the
separate threads, ensuring the application is thread safe. The threads themselves are declared
global since Windows threads cannot be made class members. The following diagram illustrates
the basic flow of execution.

Figure 2 – FlightVisDlg State Transition Diagram

The class CFlightVisDlg, in addition to controlling the real-time access to the database

entries, also ensures that the ActiveX controls are passed new frames of data as quickly as
possible. The two worker threads created at runtime are declared OnStartDataThread and
RedrawThreadProc. The basic agenda of each thread is to repeat
the following:

OnStartDataThread

•Obtain mutually exclusive access to the shared variables such as the CFIRData database
access class, and the event value buffer, m_pEventValue.

•Obtain a buffer of data from the database. Update the event value buffer to reflect the
current data values.

•Determine when the next data will be available for reading.
•Release the critical section access.
•Sleep until the next data becomes available.

RedrawThreadProc

•Obtain mutually exclusive access to the shared variables such as the event value buffer,
m_pEventValue

•Copy the values stored in m_pEventValue locally, and release the critical section access.
•Set the frame properties of VisClientsWrapper class objects using the newly obtained,

locally copied database values. VisClientsWrapper objects will in turn pass this data onto
its VisClient components and their respective visualization window objects.

 Each thread of execution continues this process until the variable fStopRedraw becomes true
(i.e. the user presses "stop", or "pause", or the end of the database is reached). Thus, the
visualization controls are redrawn at a rate which is independent of the rate of data flow. In this
way, the IO-bound process of querying the database is allowed to maintain real time updates,
while the compute-bound process of redrawing the OpenGL objects is allowed to function as
quickly as it can. In other words, the data will always be retrieved in real time, while the
graphics performance will improve as the processor and graphics hardware improve.

Class CFlightVisDlg
 Class CFlightVisDlg is responsible for keeping the data up-to-date, and for making sure the
information is passed to the VisClientsWrapper class objects at a reasonable rate. To do this, it
utilizes the global worker thread functions OnStartThreads and RedrawThreadProc. This class is
also responsible for responding to user mouse-clicks and button callbacks. It uses the following
methods to perform these tasks:

Name: Purpose: Parameters: Return:
OnCmdMsg() Ensures that a function

executed on a visualization
in the wrapper is executed
only once per call

UINT nID, int
nCode, void*
pExtra,
AFX_CMDHAN
DLERINFO*
pHandlerInfo

bool

OnInitDialog() Called when the dialog is
initialized. Performs
initialization of dialog box,
buttons, bitmaps and
controls such as the slider

None bool: TRUE if
successful,
FALSE
otherwise

~CFlightVisDlg() Destructor: deletes objects
which were allocated
memory by the constructor

None None

CFlightVisDlg() Constuctor: Allocates
memory to pointers.

None None

DisableControls() Renders all buttons in the
UI insensitive to user
clicks (i.e. greys them out).

None None

DoDataExchange() Exchanges data with the
user interface, placing UI
defined values into
member variables

CDataExchange*
pDX

None

EnableControls() Renders all buttons in the
UI sensitive to user clicks,
based upon the playback
state. Certain buttons may
remain grey-out.

None None

OnBnClickedFastForward() Callback for the “fast
forward” button, which
advances the simulator by
one second during frame-
by-frame playback

None None

OnBnClickedFrameCheck() Callback for the “Frame by
frame” check box control,
which sets the member
variable
m_fFrameByFrame
accordingly

None None

OnBnClickedLoop() Creates a “Looped
Playback” dialog box
which queries the user for a
looping range. When the
dialog is closed, looping is
automatically enabled.

None None

OnBnClickedLoopCheck() Sets the check state of the
“Looped Playback” check
box, and sets the member
variable m_fLooping
accordingly

None None

OnBnClickedNextTrack() Callback for the “next
track” button, which
advances the flight
simulator to the next flight.

None None

OnBnClickedPause() Sets the playback stat to
PAUSE, and gStopRedraw
to TRUE, thereby halting
the threads

None None

OnBnClickedPlay() Sets the playback state to
PLAY and begins the

None None

worker threads
OnStartDataThread and
RedrawThreadProc

OnBnClickedPreviousTrack() Callback for the “previous
track” button, which moves
the flight simulator to the
previous flight in a multi-
flight database.

None None

OnBnClickedRestart() Sets the playback state to
STOP, and gStopRedraw
to TRUE. Also sets the
slider position to 0, and
moves to the beginning of
the database

None None

OnBnClickedRewind() Callback for the “rewind”
button, which moves the
simulator back by one
second during frame-by-
frame playback.

None None

OnBnClickedSlowdown() Callback for the “decrease
playback speed” button.
Decreases the value of
m_PlaybackSpeed

None None

OnBnClickedSpeedup() Callback for the “increase
playback speed” button.
Increases the value of
m_PlaybackSpeed

None None

OnCancel() Calls OnFileExit(). Used
when closing window by
“Cancel Window” button

None None

OnCBNComboSelChange() Callback for the combo
box control. This function
is called when the selection
in the combo box is
changed

None None

OnFileExit() Stops the threads, closes
the database and exits the
application

None None

OnFileOpendata() Initializes the database file
for reading, determines the
number of flights in the
database, and allows the
user to select which flight
to display.

None None

OnHelpGethelp() Opens HTML help files in
a web browser

None None

OnHScroll() Callback for the slider
control, when it is moved,
and when the thumb is let
go

UINT nSBCode:
the reason for the
call.
UINT nPos: The
new slider
position.
CScrollBar*
pSlider: Pointer
to the control.

None

OnPaint() Called by the system to
redraw the application
dialog when it is
repositioned or resized

None None

OnQueryDragIcon() The framework calls this
function by a minimized
(iconic) window that does
not have an icon defined
for the class.

None None

OnSysCommand() The framework calls this
member function when the
user selects a command
from the Control menu, or
when the user selects the
Maximize or Minimize
button.

UINT: specifies
the type of system
command
requested.
LPARAM: cursor
coordinates

None

StartThreads() Starts the worker threads,
sets gStopRedraw to
FALSE, and sets up a
message dispatch to listen
for user messages

None None

Table 1 CFlightVisDlg Methods

Data Members:
Additionally, CFlightVisDlg utilizes the following member variables:
Name: Data Type: Description:
m_DBFile _bstr_t The name of the Microsoft Access

database file to open, as supplied by the
user

m_fFrameByFrame bool TRUE if frame by frame playback is
enabled, FALSE otherwise. This flag
causes frame by frame to start or stop.

m_fLooping bool TRUE if looped playback is enable,
FALSE otherwise. This flag causes
looping to start or stop

m_fStopThreads bool TRUE if the threads should not be
running, FALSE otherwise. This flag

causes the separate threads to stop running
once bool TRUE if function has been run once
m_stop bool TRUE if the threads should be reset,

FALSE otherwise
m_cbFrame CButton Check box used to indicate whether or not

frame by frame is enabled
m_cbLoop CButton Check box used to indicate whether or not

looping is enabled
m_clCombo CComboBox The class that encapsulates a combo box

object, used to display the different flights
within a multi-flight database and to allow
the user to switch flights after loading the
data

m_Database CFIRData A database object, which allows access to
the database values via a recordset
pointer.

m_pcwd char* Pointer to the semi current working
directory

m_FastForwardButton CImageButton Used to place a bitmap over the dialog
fast forward button, rather that the
standard text

m_LoopButton CImageButton Used to place a bitmap over the dialog
loop button, rather that the standard text

m_NextTrackButton CImageButton Used to place a bitmap over the dialog
next track button, rather that the standard
text

m_PauseButton CImageButton Used to place a bitmap over the dialog
pause button, rather that the standard text

m_PlayButton CImageButton Used to place a bitmap over the dialog
play button, rather that the standard text

m_PreviousTrackButton CImageButton Used to place a bitmap over the dialog
previous track button, rather that the
standard text

m_RewindButton CImageButton Used to place a bitmap over the dialog
rewind button, rather that the standard text

m_SlowdownButton CImageButton Used to place a bitmap over the dialog
slowdown button, rather that the standard
text

m_SpeedupButton CImageButton Used to place a bitmap over the dialog
speedup button, rather that the standard
text

m_StopButton CImageButton Used to place a bitmap over the dialog
stop button, rather that the standard text

m_odtLoopStart COleDateTime The start time of the looping range
m_odtLoopStop COleDateTime The end time of the looping range
m_pControls ControlContainer* A structure containing pointers to the

three ActiveX control objects. This struct
is passed to the RedrawThreadProc, which
uses them to redraw the controls

m_clSlider CSliderCtrl The class that encapsulates a slider object,
used to show the current reading position
in the database, relative to the beginning
and end

m_PlaybackSpeedLabel Cstring The static text drawn into the “Playback
Speed” field of the dialog box

m_sAbsoluteTime Cstring The time displayed by the TimeLabel
control, used to keep track of the exact
time to be displayed after pausing, or
using frame-by-frame playback

m_TimeLabel Cstring The static text drawn into the “Time” field
of the dialog box.

m_pEventValue double* A pointer to an array of double precision
digits, which represent the values in the
datatbase at any given point in time after
the OnStartDataThread has begun

m_PlayBackState enum PlaybackState The current state of the playback state
machine, which can be one of: PLAY,
PAUSE, STOP

m_nCurrFlight int The current flight being played, based on
the number of flights in the database

m_nFrameDir int The direction of playback, requested by
the user during frame-by-frame playback.
A value of 0 indicates forward; 1 indicates
backward

m_nPlaybackSpeed int The playback speed, which can be one of:
1, 2, 5, 10, 15, 20, or 25

m_nSliderStart int The starting position of th slider during
looped playback

m_nSliderStop int The ending position of the slider during
looped playback

m_hIcon HICON Application icon
m_pVisClients CVisClientsWrapper* Pointer to the visualization wrapper
m_SliderPos int The position of the slider, relative to the

beginning. The range of positions is set in
OnInitDialog

Table 2 CFlightVisDlg Members

Global Data:
Name: Data Type: Description:
g_dttime COleDateTime Timestamp of entry
g_millisecond int Milliseconds of entry

Figure 3 – Global Data

Database Access Class
 The flight data is supplied to the visualization tool in a Microsoft Access database. The
database contains a single table called FIRData. The FIRData table contains four separate fields
comprising all of the data necessary to run the visualization tool: DtTime, Milliseconds,
ParameterName and ParameterValue.

 FIRData

DtTime
Milliseconds

ParameterName
ParameterValue

Figure 4 – FIRData

The DtTime field contains a string consisting of the date and time that the associated parameter
was recorded, in the form: mm/dd/yyyy hh:mm:ss PM. The table is accessed through the C++
class CFIRData. The Milliseconds field consists of the number of milliseconds after the time
specified by the associated DtTime field at which the associated parameter was recorded. It is an
unsigned integer. The ParameterName field consists of a string that specifies the parameter
being recorded at the given time. Possible parameter names include:

Name: Meaning:
Airspeed Airspeed, in knots
Altitude Altitude of the plane, in feet
AOA The angle of attack of the plane
EWV The east-west velocity
G The G-Force felt by the pilot
GEARUP The state of the landing gear
Heading Magnetic heading, in degrees
LANDING The plane is considered as landed
NSV The north-south velocity
Pitch Angle of the plane with its latitudinal axis
PitchRate Rate of change of the pitch
Roll Angle of the plane with its longitudinal axis
RollRate Rate of change of the roll
TAKEOFF The plane is considered to have taken off
VV The vertical velocity
WOW The weight on wheels of the plane
YawRate Rate of change of the yaw (angle with respect to the plane’s vertical

axis).
NLAT Latitude
ELONG Longitude

Figure 5 - FIRData Parameter Names

Finally, the ParameterValue field contains a floating point digit that represents the value of one
of the parameter names described above.

Struct FIREntry
 The FIREntry struct is used as a means of conveniently storing all of the information
contained in a single record. Since the entries in the ParameterName field are enumerable, they
are stored as an enumeration to save space. FIREntry consists of the following fields:

FIREntry
enum EventType
COleDateTime dttime
double parametervalue
EventType parametername
int recordNum
UINT milliseconds

Figure 6 - Struct FIREntry

Class CFIRData
 The CFIRData class utilizes Microsoft ADO 2.7 (ActiveX Data Objects version 2.7) to
access the database fields. A connection to the database is established using an ADO
_ConnectionPtr object, which is then used to generate a _RecordsetPtr pointer object via an SQL
SELECT statement. This object is used to advance through the records, one by one. It cannot be
used to move backwards through the records, but this is not problematic since the SQL SELECT
can be written such that the records are received in sorted order. The methods supplied by the
CFIRData class include:

Name: Purpose: Parameters: Return Value:
~CFIRData() Destructor None None
ACKSeek() Sets the member

variable m_fSeeked to
FALSE, and causes the
function Seeked() to
return FALSE

None None

CFIRData() Constructor None CFIRData object
CloseFlightData() Closes the connection

established with
InitializeDatabase(), and
calls Reset()

None None

GetBuffer() Queries the database for
a DtTime value which
matches the current date
and time stored in a
member variable. All
entries for the given
second are sorted by
milliseconds, and store
din a FIREntry struct.
Each struct is inserted

None
or
int n_desiredSeconds

vector<struct
FIREntry>&:
Reference to the vector
containing the
FIREntry’s for the
current second

into a vector of
FIREntry’s , and is
returned to the caller

GetCurr_RecordNum() Returns the index of the
current record retrieved
from the database

None long: the index of the
current record retrieved
from the database

GetDtTime() Returns the current
DtTime field from
whatever database
record is currently being
pointed to

None CString: The DtTime
value as a string

GetFlightDate() Returns the date of the
flight specified by its
index

int flight_num Cstring: the date of the
flight as a string

GetFlightEnd() Returns the ending time
of the flight specified by
its index

int flight_num Cstring: the time of the
flight as a string

GetNumFlights() Returns the number of
flights in the database

None int: the number of
flights in the database

GetNumRecords() Returns the total number
of records in the
database

None long: the number of
records in the database

GetRecordByDate() Returns the record
number of the last
occurrence of the
specified date

CString sDate long: the record
number of the last
occurrence of the date
specified

InitializeDatabase() Opens the database
named by its parameter.
Initializes the connection
pointer and recordset
pointer to the beginning
of the dtatbase

const_bstr_t
filename

None

IsEnd() Returns TRUE if the
database reader has
reached the end of the
file

None VARIANT_BOOL:
TRUE if the database
reader has reached the
end of the file

IsOpen() Returns TRUE if a flight
database is currently
open. Returns FALSE
otherwise

None bool: TRUE if the
database is open

OpenFlightData() Scans the database
opened with
InitializeDatabase() for
multiple flights, and
stores the total number
of records per flight.

None None

Also, stores the values
for min/max airspeed
and altitude

ReportException() Instantiates a popup
dialog box containing
the reason the exception
was thrown. Waits for
the user to acknowledge,
then exits the application

char* reason,
_com_error ex

None

Reset() Clears all flight record
and min/max values
from local variables.
Useful when closing a
database connection

None None

Seek() Seeks through the
database until the
supplied record is
reached. The recordset
pointer is then set to
point to this position

Long nNum long: the record
number being pointed
at, or -1 if failure

Seeked() Returns TRUE if the
function Seek() has been
called and the function
ACKSeek() has not been
called. Returns FALSE
otherwise

None bool: TRUE if the
database has been
Seeked and not
ACKED

SetFlight() Sets the member
variable m_odtCurrTime
to the time specified by
the caller

int nFlightNum None

SetTime() Sets the member
variable m_odtCurrTime
to the time specified by
the caller

UINT nHour
UINT nMinute
UINT nSecond

None

TimeDifference() Calculates the time
difference in
milliseconds between
two times

ColeDateTime t1, t2
UINT m1, m2

double: the difference
in time

Table 3 CFIRData Methods

Member Data:

Class CFIRData also consists of the following data members:

Name: Data Type: Description:
m_Connection _ConnectionPtr Points to a connection with a

Microsoft Access database. The
connection is then used to generate
recordset pointers from SQL queries

m_ConnectRead _RecordsetPtr Points to a recordset object. The
pointer always points to the current
record that is being examined

m_FirstRead bool TRUE if the current pass through the
database is the first

m_fOpen bool TRUE if a connection pointer to a
database has been opened. FALSE
otherwise

m_fSeeked bool TRUE if the database has been
Seeked() without being ACKed()

m_odtCurrDate COleDateTime The current date and time used to fill
the m_vCurrSecond buffer. It is
incremented by 1 second each time a
new buffer is filled.

m_odtNextDate COleDateTime The date that should be used as the
ending date to accept while
performing GetBuffer().

m_odtsDesiredSpan COleDateTimeSpan The span of desired seconds passed to
GetBuffer(). This is the number of
seconds worth of data (real time) that
will be passed to the caller.

m_nCurrFlight int The current flight in a multiple flight
database

m_nFirstRecordNumber Int The absolute number of the first
record of the selected flight, relative to
the absolute beginning of the
database.

m_nCurrRecord long int The current record number pointed to
by m_ConnectRead, relative to the
first record of that flight

m_nNumFlights int The number of different flights in the
database

m_nNumRecords long int The number of records in the flight
being examined

m_vFlightDates vector<CString> Contains the starting DtTime value of
each flight tin the database. The user
chooses the desired flight based on
this value

m_vFlightEnds vector<CString> Contains the ending DtTime value of
each flight in the database. Useful for
knowing the limits of a looping range

m_vCurrSecond vector<FIREntry> Contains all of the data from the
database that matches the SQL query

for the current DtTime value, sorted
by milliseconds

m_vNumFlightRecs vector<long> Contains the number of records for
each flight within the database being
examined. The vector can be indexed
by the desired flight number

m_vRecordMap vector<map<CString,
int>>

Contains the map of the first
occurrence of each DtTime value,
mapped to the record number of that
occurrence. Useful in the
GetDateByRecord, and frame by
frame playback.

Table 4 CFIRData Members

Visualization Package Wrapper - CVisClientsWrapper
 This class acts as a wrapper for multiple visualization DLLs to facilitate simultaneous
playback. The CVisClient Wrapper object keeps a vector of pointers to visualizations selected
for playback as well as a vector of Function structs containing information about the functions
associated with the selected visualizations. The purpose of the Function vector is to enable calls
to functions that are defined within the DLL and need to be called as the result of user input, but
are not available through the IVisClients interface. The Function struct consists of the following
fields:

Function
char Name[255]
int WrapperIndex
int VisIndex
int FunctIndex

Figure 7 - Struct Function

Name contains the name of the function. WrapperIndex and VisIndex provide the indices to of
the wrapper and visualization with which the function is associated. FunctIndex is the index of
the function within its visualization.
 The wrapper constructor calls the method GetFunctions() on itself which calls a similar
method on all its visualization DLLs. The functions return a VARIANT type, this type is used so
that the dlls can still be used be Visual Basic. The VARIANT holds a SAFEARRAY of BSTR
which each contain the name of one function. The order of the function names is assumed to also

be the order of their indexes in the dll, starting at 0 (i.e. if the array contained {"Open Model",
"Hide HUD", "Hide GPI"} then ExecuteFunctions(0) would open a new model, 1 would hide the
HUD, etc.). The BSTR objects are converted to char[255] when placed into a Function struct, so
no conversion is needed when using that data type. The wrapper uses the method
ExecuteFunction() to execute functions associated with a DLL. When ExecuteFunction(wIndex)
is called, a call is made to m_visualization[vIndex]->ExecuteFunction(fIndex), where wIndex is
the index of the function in the m_functions vector, vIndex is the index of the visualization that
the function belongs to in the m_visualizations vector, and fIndex is the index inside the
visualization of the function. The following sequence diagram illustrates the use of these
functions:

Figure 8 – Sequence Diagram of GetFunction() and ExecuteFunction() Methods

 The following sequence diagram illustrates the interaction of the CVisClientsWrapper
class with the FlightVisDlg and its VisClient DLLs, where CVisClientsWrapper is the .dll
wrapper class.

FlightVisDlg::OnRedrawThreadPr
oc .dll wrapper class

SetFrame()

.dll

SetFrame()

SetFrame()

Reset()

Reset()

Reset()

if(m_stopthreads)

Figure 9 – Sequence Diagram of VisClient Interactions with FlightVsDlg and DLLs

Class CVisClientsWrapper
 VisClientsWrapper has the following methods to receive information from the
FlightVisDlg and pass it onto its VisClient DLLs:

Name: Purpose: Parameters: Return:
CVisClientsWrapper() Constructor. Creates any IVisClient

pointers for any visualization DLLs
to be used and adds them to the
m_visualizations vector

None None

~CVisClientsWrapper() Destructor None None
Reset() Calls Reset() on all visualizations in

m_visualizations vector. This will
return all variables in a visualization
to their initial values. Usually used
after a pause/stop

None None

SetFrame() Sets the data for this frame in all
visualizations

FIRStruct* f,
FIRTimeStamp*
g

None

GetNumberOfVisualizations
()

Returns the number of visualizations
being handled by this wrapper

None size_t

GetDescriptionOf() Returns the description of the
Visualization at the integer index
specified in the parameters. This
information is stored in the DLL and
retrieved by the GetName() method
of IVisClient interface

unsigned index char*

GetFunctionsFor() Retrieves all functions from the
visualization that corresponds to the
vIndex passed

unsigned vIndex vector<Func
tion>

ExecuteFunction() Executes the function corresponding
to the wIndex passed

unsigned wIndex bool

GetFunctions() Retrieves all function info from the
DLLs and places them into the
m_functions vector. This method
should be called after all
visualizations have been added (ie:
after the constructor).

None None

Table 5 - CVisClientsWrapper Methods

Member Data:

Class CVisClientsWrapper also consists of the following data members:

Name: Data Type: Description:
m_visualizations vector<IVisClientPtr> Vector containing pointers to selected

visualization DLLs
m_functions vector<Function> Vector containing Function structs for the

selected visualizations
Table 6 - CVisClientsWrapper Members

MSU Visualization - CVisClient
 This class instantiates and contains the window components of the MSU Flight
Visualization—the Plane visualization, the HUD, the Flight Track View, and the Ground
Proximity Indicator. CVisClient passes the flight data received from FlightVisDlg by way of the
VisClientsWrapper class to the individual window components objects using its SetFrame()
method, which calls the SetFrame() method of the window components. This process is
illustrated in the sequence diagram below:

VisClient(.dll) Plane HUD FlightTackView GPI

SetFrame()

SetFrame()

Invalidate()

SetFrame()

Invalidate()

SetFrame()

SetFrame()

Invalidate()

SetFrame()

SetFrame()

Invalidate()

SetFrame()

SetFrame()

Figure 10 – Sequence Diagram of MSU Visualization

Class CVisClient

CVisClient uses the following methods to accept data from the CVisClientsWrapper class
and pass it to its four window component objects:

Name: Purpose: Parameters: Return:
CVisClient() Constructor for CVisClient None None

object. Instantiates each of the
MSU Flight Visualization
window objects

~CVisClient() Destructor None None
FinalConstruct() Called by the implementation

when the object has finished
constructing itself

None HRESULT

Reset() Sets m_curtime to NULL.
Calls Reset() or clear()
function on all window objects

None None

SetFrame() Calls SetFrame() function on
all window objects. Calculates
position variables m_curx,
m_cury, m_curz

FIRStruct *f,
FIRTimeStamp* g

None

GetName() Returns string identifying
object as MSU Flight
Visualization

BSTR *name None

GetFunction() Retrieve available functions for
selected visualization

VARIANT * pVal None

ExecuteFunction() Execute available functions for
selected visualization

int fNum None

Table 7 - CVisClient Methods

Member Data:

Class CVisClient also consists of the following data members:

Name: Data Type: Description:
m_GPI CGPI* Pointer to GPI window object
m_ HUD CHUD* Pointer to HUD window object
m_plane CPlane* Pointer to plane window object
m_ftv CFlightTrackView* Pointer to FlightTrackView window

object
m_name char* Pointer to memory containing name of

visualization
m_curx double Stores current east-west position
m_ cury double Stores current north-south position
m_curz double Stores velocity vector information
m_curtime COleDateTime Stores date and time of current second

being processed
m_curmillisec int Current millisecond within second being

processed
Table 8 - CVisClient Members

ActiveX Visualization Controls:

 The Active X visualization controls were created using the Active Template Library 7.0 and
OpenGL libraries. They each implement all standard interfaces defined by the Microsoft Visual
Studio .NET wizard and also allow connection points with their container(s). They are all
contained within the amudvt project workspace, which is an ATL based project without MFC
support. Each control functions along the same basic principles.
 Upon creation, from the OnCreate function, the control will initialize the OpenGL context
in which it will draw, using functions like CreateContext and CreateRGBPalette. Then, anytime
the programmer/user wishes to have the control redraw itself with new parameter values, all that
must be done is to call SetFrame and the will redraw itself. See the following section, “Tips for
Reusing Visualizations,” for more information on how to use the controls within your own
separate executable. All drawing is actually done in the OnDraw function.
 The controls can also be resized easily since all sizes are computed from the controls'
bounding rectangle rather than from absolute pixel values. Upon notification of a size message,
the control simple destroys its old OpenGL context and recreates one with the proper size.

Tips for Reusing Visualizations:
 The visualizations can be reused in any other application of your choosing in order to allow
future users/programmers to feed in data from different sources besides a pre-created Microsoft
Access database. They can be inserted easily into any Visual Studio and/or .net application.
Granted, you will need a basic knowledge of how to use standard controls in visual studio, which
would be too in depth to detail here. Then, each time SetFrame is called, the visualization(s) will
update themselves. These methods are described in the grids below.
 Note that the visualization controls will update whenever those methods are invoked, so
keep in mind that you must watch their timing. In general, if ran on a computer with the
recommended specifications, they should be able to approach twenty-eight frames per second
maximum. As the capabilities of the computer grow, so too will the frame rate. When ran in the
provided stand-alone Flight Visualization application, the data will update at a fixed maximum
of ten millisecond intervals due to the potential delay in SQL queries on the database.

HUD (ActiveX Control class for the HUD)
 This class displays the Heads Up Display in an ActiveX control.

Name: Purpose: Parameters: Return:
~CHUD() Destructor deletes all heap

memory used
None None

bSetupPixelFormat() Uses a
PIXELFORMATDESCRIPTOR
struct to setup the pixel format
used in CreateContext(). More
specifically, the pixel format is
RGBA type with 24-bit color
depth. It is double buffered with
a 32-bit z buffer.

HDC hdc bool: indicates
success of
setup

CHUD() Constructor creates
defaultPalEntry struct for use to
later initialize the color palette
for OpenGl context. Also sets
all members to necessary
initialization values such as
setting pointers to NULL
parameters to zero

None None

ComponentFromIndex() Used by CreateRGBPalette to
optimally compute color entries
through table lookups rather than
actual calculations. Improves
speed of CreateContext, and
thereby allows for faster resizing
when CreateContext is called by
OnSize

int i,
UINT nbits,
UINT shift

unsigned char

CreateContext() Sets up the OpenGL context in
which the visualization is drawn
in. Sets up the pixel format
through a call to
CreateRGBpalette() and attaches
the RGB color palette created in
the constructor to the context.
Also initializes the camera
perspective for the OpenGL
function calls

HDC hdc,
RECT& rc

None

CreateRGBPalette() Called by CreateContext() to
initialize the color palette using
the default palette entry struct
value

HDC hdc None

DrawAirSpeedAndAltitude(
)

Displays airspeed and altitude
inside boxes

double speed,
double altitude

None

DrawGandAOA() Displays G’s and AOA double G, double
AOA

None

DrawHSI() Draws heading scale indicator double heading None
DrawHSITics() Draws tic marks for heading

scale indicator
double height,
double width,
double Heading

None

DrawLatLon() Calculates latitude and longitude
and draws latitude/longitude
display

double NSV,
double EWV,
double altitude,
double latitude,
double longitude

None

DrawLine() Draws a single line of the pitch
ladder and displays the number
associated with that line

int num None

DrawPitchLadder() Makes all calls to draw the pitch
ladder

double FPA,
double PLBank

None

DrawRollInd() Draws roll indicator double roll None
DrawRollTic() Draws one individual tic mark

for roll indicator
double depth None

DrawVelocityVector() Makes all calls to draw the
velocity vector

double NSV,
double EWV,
double VV, double
Roll, double Pitch,
double &velX,
double &velY, bool
lowVelocity

None

FinalConstruct() Called by the implementation
when the object has finished
constructing itself

None HRESULT

FinalRelease() Called by the implementation
when the object is about to
destroy itself because there are
no extant references left on the
object

None None

OnCreate() Called after construction, upon
creating of control. Saves the
handle to the device context into
a member variable (m_hdc),
determines the bounding
rectangle, and initializes the
control by calling
CreateContext().

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnDestroy() Deletes the OpenGL context and
sets the m_hdc to NULL

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,

LRESULT

BOOL& bHandled
OnDraw() Sets the current OpenGL context

to the one created by this control
in case it has been changed since
the last call, then sets up
OpenGL parameters, calculates
data variables, and makes calls
to draw actual visualization.

ATL_DRAWINFO
& di

HRESULT

OnEraseBackgnd() Returns zero to eliminate flicker.
Stop the erasure of background.

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnFirstDraw() Creates font display list None None
OnSize() After ensuring that the current

OpenGL context is the one
created by this class’s
CreateContext function, it
deletes the now invalid context
and recreates it to occupy the
new size of the control’s border
rectangle.

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

Reset() Resets HUD to a starting state None None
SetFrame() Control method to set all

property values in one call
VisClientStruct* f None

Table 9 CHud Methods
Member Data:

Class HUD also consists of the following data members:

Name: Data Type: Description:
m_bActive bool TRUE if mouse is active
m_bMouseCaptured bool TRUE if mouse position is captured
m_firstdraw bool TRUE if the first frame has not been

drawn
m_Airspeed double Stores property value
m_Altitude double Stores property value
m_AOA double Stores property value
m_EWV double Stores property value
m_G double Stores property value
m_Heading double Stores property value
m_Lat double Stores calculated latitude value
m_Lon double Stores calculated longitude value
m_NSV double Stores property value
m_Pitch double Stores property value
m_Roll double Stores property value

m_VV double Stores property value
m_Fov float Field of view for HUD
m_fRadius float Window radius
m_base GLunit Font display list
m_hdc HDC Stores handle to control’s GDI device

context
m_hrc HGLRC Window context
m_hPal HPALETTE Palette context
defaultOverride[13] int
m_fontHeight int Height of font for HUD
m_xPos int Mouse position x-coord
m_yPos int Mouse position y-coord
*m_pPal LOGPALETTE Log context
defaultPalEntry[20] PALETTEENTRY Stores default palette color values, used

by CreateRGBPalette
oneto8[2] unsigned char Used as mathematical table look up for

ComponentFromIndex()
threeto8[8] unsigned char Used as mathematical table look up for

ComponentFromIndex()
twoto8[4] unsigned char Used as mathematical table look up for

ComponentFromIndex()
m_NLAT double Stores property value
m_ELONG double Stores property value

Table 10 CHud Members

Plane (ActiveX Control class for the Plane)
 This class displays the actual model of the selected aircraft image in an ActiveX control.

Name: Purpose: Parameters: Return:
~CPlane() destructor deletes all heap

memory used
None None

bSetupPixelFormat() Uses a
PIXELFORMATDESCRIPTOR
struct to setup the pixel format
used in CreateContext(). More
specifically, the pixel format is
RGBA type with 24-bit color
depth. It is double buffered
with a 32 bit z buffer.

HDC hdc bool: indicates
success of
setup

ComponentFromIndex() used by CreateRGBPalette to
optimally compute color entries
through table lookups rather
than actual calculations.
Improves speed of

int i,
UINT nbits,
UINT shift

unsigned char

CreateContext, and thereby
allows for faster resizing when
CreateContext is called by
OnSize

Cplane() constructor creates
defaultPalEntry struct for use to
later initialize the color palette
for OpenGl context. Also sets
all members to necessary
initialization values such as
NULL-ing pointers and zeroing
out visualization parameters.

None None

CreateContext() sets up the OpenGL context in
which the visualization is drawn
in. Sets up the pixel format
through a call to
CreateRGBpalette() and
attaches the RGB color palette
created in the constructor to the
context. Also initializes the
camera perspective for the
OpenGL function calls

HDC hdc,
RECT& rc

None

CreateRGBPalette() called by CreateContext() to
initialize the color palette using
the default palette entry struct
value

HDC hdc None

CreateTexture() Creates Texture information for
texture mapping of OpenGL
object

GLunit
textureArray[],
LPSTR
strFileName,
int textureID

None

DrawFrontGear() Draws front gear None None
DrawLandingGear() Draws gear set None None
DrawRearGear() Draws rear gear None None
DrawRunway() Contains the OpenGL code to

draw the runway at the location
given

Double x, y, z None

FinalConstruct() Called by the implementation
when the object has finished
constructing itself

 HRESULT

FinalRelease() Called by the implementation
when the object is about to
destroy itself because there are
no extant references left on the
object

None None

needsRedraw() Returns value of m_redraw none bool: indicates

if redraw
needed

OnCreate() called after construction, upon
creating of control. Saves the
handle to the device context into
a member variable (m_hdc),
determines the bounding
rectangle, and initializes the
control by calling
CreateContext().

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnDestroy() deletes the OpenGL context and
sets the m_hdc to NULL

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnDraw() Sets the current OpenGL
context to the one created by
this control in case it has been
changed since the last call, then
sets up OpenGL parameters,
calculates data variables, and
makes calls to draw actual
visualization.

ATL_DRAWINFO
& di

HRESULT

OnEraseBackgnd() returns zero to eliminate flicker.
Stop the erasure of background.

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnFirstDraw() Creates bitmap font display list
on the first pass

None None

OnSize() after ensuring that the current
OpenGL context is the one
created by this class’s
CreateContext function, it
deletes the now invalid context
and recreates it to occupy the
new size of the control’s border
rectangle.

UINT uMsg,
WPARAM
wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OpenModel() Opens the 3DS model pointed to
by m_Filename

None None

Plane() Draws the plane when called by
OnDraw

GLdouble&
x_extent,
GLdouble&
y_extent,
GLdouble&
z_extent

GLdouble

put_Filename() Sets filename of plane model
and opens model

char* newVal None

Reset() Resets Plane back to starting
state

None None

setFilename() Sets filename of plane model,
opens model, and redraws

LPSTR filename None

SetFrame() Control method to set all
property values in one call

VisClientStruct* f None

setNeedsRedraw() Sets m_redraw to TRUE None None
UpdateGear() Updates gear None None
DrawBuilding() Draw building object double x, double y,

double z, int tex
None

Table 11 - CPlane Methods
Member Data:

Class Plane also consists of the following data members:

Name: Data Type: Description:
MAX_DEPTH #define Sets limits for plane
MAX_HEIGHT #define Sets limits for plane
MAX_WIDTH #define Sets limits for plane
m_firstdraw bool Check for first draw
m_isNewModel bool Check for newly loaded model
m_redraw bool Indicates whether the window

needs to be redrawn
time bool Check for initial pass
m_Loader CLoad3DS 3D model loader object
m_alt double Current altitude of the plane
m_endx double Stores the final x coordinate of

the plane
m_endy double Stores the final y coordinate of

the plane
m_endz double Stores the final z coordinate of the

plane
m_final_alt double Stores the final altitude of the

current flight
m_GearDown double Stores property value
m_Heading double Stores property value
m_init_alt double Stores the initial altitude of the

current flight
m_landed double Stores property value for

LANDING
m_Pitch double Stores property value
m_Roll double Stores property value
m_speed double Current speed of the plane
m_x double Stores the current x coordinate of

the plane

m_y double Stores the current y coordinate of
the plane

m_z double Stores the current z coordinate of
the plane

t_gearstate {RAISING, LOWERING} enum Stores status of the landing gear
m_planeDL GLunit Plane display list
m_Textures[MAX_TEXTURES] GLunit Texture object for model
m_runwayTex[MAX_TEXTURES] GLunit Texture object for runway
m_hdc HDC Stores handle of control’s device

context
m_hrc HGLRC Window context
m_hPal HPALETTE Palette context
defaultOverride[13] int
dist int Distance traveled along runway
m_initialDraw int Indicates if is initial draw
m_GearState int Numeric value of landing gear

status
*m_pPal LOGPALETTE log context
defaultPalEntry[20] PALETTEENTRY stores default palette color values,

used by CreateRGBPalette
m_Filename string Filename of 3DS model being

used
m_3DModel t3dModel Loaded 3D model
oneto8[2] unsigned char Used as mathematical table look

up for ComponentFromIndex()
threeto8[8] unsigned char Used as mathematical table look

up for ComponentFromIndex()
twoto8[4] unsigned char Used as mathematical table look

up for ComponentFromIndex()
Table 12 - CPlane Members

CGpi (ActiveX Control class for the GPI)
 This class displays the Ground Proximity Indicator in an ActiveX control.

Name: Purpose: Parameters: Return:
bSetupPixelFormat() Uses a

PIXELFORMATDESCRIPTO
R struct to setup the pixel
format used in
CreateContext(). More
specifically, the pixel format is
RGBA type with 24-bit color
depth. It is double buffered
with a 32 bit z buffer.

HDC hdc bool: indicates
success of setup

FinalConstruct() Called by the implementation
when the object has finished
constructing itself

None HRESULT

OnDraw() Sets the current OpenGL
context to the one created by
this control in case it has been
changed since the last call, then
sets up OpenGL parameters,
calculates data variables, and
makes calls to draw actual
visualization.

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

HRESULT

OnCreate() Called after construction, upon
creating of control. Saves the
handle to the device context
into a member variable
(m_hdc), determines the
bounding rectangle, and
initializes the control by calling
CreateContext().

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnDestroy() Deletes the OpenGL context
and sets the m_hdc to NULL

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnEraseBackgnd() Returns zero to eliminate
flicker. Stop the erasure of
background.

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnSize() After ensuring that the current UINT uMsg, LRESULT

OpenGL context is the one
created by this class’s
CreateContext function, it
deletes the now invalid context
and recreates it to occupy the
new size of the control’s
border rectangle.

WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

CreateContext() Sets up the OpenGL context in
which the visualization is
drawn in. Sets up the pixel
format through a call to
CreateRGBpalette() and
attaches the RGB color palette
created in the constructor to the
context. Also initializes the
camera perspective for the
OpenGL function calls

HDC hdc,
RECT& rc

None

CreateRGBPalette() Called by CreateContext() to
initialize the color palette using
the default palette entry struct
value

HDC hdc None

DisplayInteger() Draws an integer number at the
specified window coordinates

int num, double x=0,
double y=0, double z=0

None

DrawAltTics() Draws tic marks for ground
proximity indicator

None None

DrawGround() Draws the ground at
m_takeoffAlt

None None

FinalRelease() Called by the implementation
when the object is about to
destroy itself because there are
no extant references left on the
object

None None

OnFirstDraw() Creates bitmap font display list
on the first pass

None None

Reset() Resets window back to starting
state

None None

SetFrame() Control method to set all
property values in one call

VisClientStruct* f None

ComponentFromIndex() used by CreateRGBPalette to
optimally compute color
entries through table lookups
rather than actual calculations.
Improves speed of
CreateContext, and thereby
allows for faster resizing when
CreateContext is called by

int i,
UINT nbits,
UINT shift

unsigned char

OnSize
Table 13 CGPI Methods

Member Data:

Class CGpi also consists of the following data members:

Name: Data Type: Description:
m_firstdraw bool TRUE if first time drawing
m_Altitude double Stores property value
m_maxAlt double Stores maximum altitude of the

flight
m_minAlt double Stores minimum altitude of the

flight
m_takeoffAlt double Stores altitude at takeoff
m_base GLuint Font display list
m_hdc HDC GPI device context
m_fontHeight int Height of font
m_pixelsize double
m_fRadius float Window radius
m_hPal HPALETTE Palette context
defaultOverride[13] int
*m_pPal LOGPALETTE Log Context
defaultPalEntry[20] PALETTEENTRY Stores default palette color

values, used by
CreateRGBPalette

oneto8[2] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

threeto8[8] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

twoto8[4] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

Table 14 CGPI Members

CFlightTrackView (ActiveX Control class for the FTV)
 This class displays the Flight Track View in an ActiveX control.

Name: Purpose: Parameters: Return:
bSetupPixelFormat() Uses a HDC hdc bool: indicates

PIXELFORMATDESCRIPT
OR struct to setup the pixel
format used in
CreateContext(). More
specifically, the pixel format
is RGBA type with 24-bit
color depth. It is double
buffered with a 32 bit z
buffer.

success of setup

FinalConstruct() Called by the implementation
when the object has finished
constructing itself

None HRESULT

OnDraw() Sets the current OpenGL
context to the one created by
this control in case it has
been changed since the last
call, then sets up OpenGL
parameters, calculates data
variables, and makes calls to
draw actual visualization.

UINT uMsg, WPARAM
wParam, LPARAM
lParam, BOOL&
bHandled

HRESULT

OnCreate() Called after construction,
upon creating of control.
Saves the handle to the
device context into a member
variable (m_hdc), determines
the bounding rectangle, and
initializes the control by
calling CreateContext().

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnDestroy() Deletes the OpenGL context
and sets the m_hdc to NULL

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnEraseBackgnd() Returns zero to eliminate
flicker. Stop the erasure of
background.

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

OnSize() After ensuring that the
current OpenGL context is
the one created by this
class’s CreateContext
function, it deletes the now
invalid context and recreates
it to occupy the new size of
the control’s border
rectangle.

UINT uMsg,
WPARAM wParam,
LPARAM lParam,
BOOL& bHandled

LRESULT

CreateContext() Sets up the OpenGL context HDC hdc, None

in which the visualization is
drawn in. Sets up the pixel
format through a call to
CreateRGBpalette() and
attaches the RGB color
palette created in the
constructor to the context.
Also initializes the camera
perspective for the OpenGL
function calls

RECT& rc

CreateRGBPalette() Called by CreateContext() to
initialize the color palette
using the default palette
entry struct value

HDC hdc None

FinalRelease() Called by the implementation
when the object is about to
destroy itself because there
are no extant references left
on the object

None None

OnFirstDraw() Creates bitmap font display
list on the first pass

None None

SetFrame() Control method to set all
property values in one call

VisClientStruct* f None

Scales() Rescales window None None
clear() Clears window, initializes

window
None None

ComponentFromIndex() used by CreateRGBPalette to
optimally compute color
entries through table lookups
rather than actual
calculations. Improves speed
of CreateContext, and
thereby allows for faster
resizing when CreateContext
is called by OnSize

int i,
UINT nbits,
UINT shift

unsigned char

LoadBitMapFile() Load a bitmap file char* filename,
BITMAPINFOHEADER*
bitmapInfoHeader

unsigned char*

DrawTextureMap() Draw the map None None
Table 15 CFlightTrackView Methods

Member Data:

Class CFlightTrackView also consists of the following data members:

Name: Data Type: Description:
m_firstdraw bool TRUE if first time drawing

m_heading double Stores property value
m_x double X-coordinate of current location
m_z double Z-coordinate of current location
m_x_min double Minimum X-coordinate
m_z_min double Maximum Z-coordinate
m_x_max double Minimum X-coordinate
m_z_max double Maximum Z-coordinate
m_xSCALE double Scale in the X-direction
m_zSCALE double Scale in the Z-direction
m_xCENTER double Center of X-direction range
m_zCENTER double Center of Y-direction range
m_Fov float Field of view for FTV
m_base GLuint Font display list
m_hdc HDC GPI device context
m_hrc HGLRC Window context
m_fontHeight int Height of font
dot struct Struct holding coordinates of

point to be drawn in window
m_dots std::vector<dot> Vector of dots to display
m_fRadius float Window radius
m_hPal HPALETTE Palette context
defaultOverride[13] int
*m_pPal LOGPALETTE Log Context
defaultPalEntry[20] PALETTEENTRY Stores default palette color

values, used by
CreateRGBPalette

oneto8[2] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

threeto8[8] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

twoto8[4] unsigned char Used as mathematical table
look up for
ComponentFromIndex()

m_map_min_x double Minimum X-coordinate for map
m_map_min_z double Minimum Z-coordinate for map
m_map_max_x double Maximum X-coordinate for

map
m_map_max_z double Maximum Z-coordinate for map

Table 16 CFlightTrackView Members

 Rolla Visualization
 The Rolla2MSU DLL converts calls made to the MSU interface into those that Rolla's dll
can use. Thus, when it receives a SetFrame call Rolla2MSU takes all the information out of the
parameters passed to it and calls UpdateFlightDataRaw. UpdateFlightDataRaw takes about 22
parameters, a convenience function that acts as a workaround for interface problems with their
struct.
 The following sequence diagram illustrates the interaction between the
VisClientsWrapper, the Rolla2MSU visualization, and its visualization client DLLs.

Figure 11 – Sequence Diagram of Missouri-Rolla Visualization

