
CSE 498, Collaborative Design 2. Technical Specifications

Wayne Dyken & Brian Loomis 2-1 Department of Computer Science and Engineering

2. Technical Specifications

Wayne Dyksen
Brian Loomis

Department of Computer Science and Engineering
Michigan State University

Fall 2004

CSE 498, Collaborative Design

2-2

Overview
• What is architecture?

– How do I get started on the project?
• Case study driven discussion
• Thinking like an architect

– How to break it down

2-3

What is programming?

• Programming is both the act of applying a logical approach
to solving a problem and writing that logic down in a form
that the computer understands
– Programs solve problems and are tools, expressing our imagination

about the problem

• Writing programs is more like writing mathematical proofs
than building a house
– Each developer has a toolbox of constructs
– Apply the constructs iteratively in steps to create a solution to the

problem
– Each program is a unique solution but not necessarily the only one

2-4

In the early part of a project…

• Requirements gathering and understanding
– State the problem unambiguously

• Architecture and design
– Determine your approach to the problem

• First working prototype
– Test your hypothesis

• Feature complete build
– Formalize the proof

• Ship it!
– Turn it in!

2-5

Design Process Overview

Logical Design
Conceptual Design

ScenariosScenarios Physical Design

Components,
User Interface, and
Physical Database

Components,
User Interface, and
Physical Database

Objects and Services,
User Interface, and
Logical Database

Objects and Services,
User Interface, and
Logical Database

2-6

1 - Understanding requirements
• Capture the end-user or project sponsor’s intent
• Starting with…

– Often no formal docs, maybe only a shared vision
– Maybe an incomplete problem statement

• Ending with…
– Formal phrasing of requirements in a document

• Defined scope of what is in and not in the solution (boundary
conditions and features not included)

• User scenarios or experiences
– Validated initial schedule, cost, and risk (things not yet known)

• Approach…
– Identify business entities (objects) and relationships
– Remove ambiguity and logical/business inconsistencies
– Validate business rules and assumptions

CSE 498, Collaborative Design 2. Technical Specifications

Wayne Dyken & Brian Loomis 2-2 Department of Computer Science and Engineering

2-7

Content Purpose

Problem statement

Vision statement

Solution concept

User profiles

Business goals

Design goals

Why you want to do it

What you want the product to be

What you will do

Who will use the product

What you want to accomplish

How you plan to accomplish it

Possibly a vision document

2-8

Example: Image Space
• Project may involve one or more of the following…
• Camera System: re-writing the camera system to be more like

the real world equivalent. also adding real life movements,
mistakes, transitions and possible effects.

• Save Game Feature: Allowing player to save the progress of a
game at any point during a race. Additional enhancements
would be allowing replays to go “live”.

• Replay Fridge Enhancements: Enhancements of last year’s
project.

• Lens Flare:
• Ladder Competition: Setting up online competitions and ranking

people according to the results.

2-9

2 - Architecture and design
• Start translating the requirements into a plan and logical design

that can be implemented as a program to solve the problem
• Starting with…

– Requirements and user scenarios
• Ending with…

– Technical (or functional) specification
• Architecture of solution

– User interface mockup
– Interfaces to other systems or data formats
– Entity/object model for system (pseudo-code for business data

rules and functions)
– Data schema

• Identification of core feature set for the prototype
– Test plan and names of test cases (from user scenarios)
– Schedule for the development of all feature sets, cost analysis
– Risk analysis

• Approach…
– Break a big problem into lots of little problems

• To identify all moving parts and interactions

2-10

Contents of a technical spec
Content Purpose

Vision summary

Design goals

Requirements

Usage summary

Features

Dependencies

Schedule

Issues

Appendixes

What you want the product to be, justification for it,
and key high-level constraints

What you want to achieve with the product

What you require from the product including “non-
functional” requirements like reliability, scalability,
security, etc.

When the product will be used and who will use it

What exactly the product does, user interface mockup,
event models, object diagrams (and use cases), data
schema

Other factors the product
depends on (external interfaces and compatibility)

Key dates and deliverables

What risks might impact the project

Network topology, deployment plans, dev environment
setup

2-11

Example: Empowernet

2-12

Architecture constraints
• Communication

– Speed: Ethernet, GigE,
802.11b/g, or dialup

– Protocol: TCP/IP, IrDA,
POTS

• Topology
– One machine versus

multiple interacting
– External systems
– Legacy support or

previous versions of the
current app

• CPU speed
– PDA, Itanium server,

mainframe

• Memory availability
• Device-specific

parameters
– PDA display size or ink

on TabletPC

CSE 498, Collaborative Design 2. Technical Specifications

Wayne Dyken & Brian Loomis 2-3 Department of Computer Science and Engineering

2-13

Architecture tradeoffs
• Complexity

– Number of technologies
in use

– Design patterns vs.
execution speed

– Number of tiers or
subsystems

• Fully-custom, semi-
custom, or off-the-shelf
– Platform (OS, servers,

SDKs, ++)
– Language and compiler

choice
– Project type choice

• Appropriate technology
– Reusable modules
– Special-purpose

languages
– Community support

• Tools and process
– How automated a

process do you need?
– How do you

communicate designs?
(UML, ORM, etc.)

2-14

A Basic Modeling Process
1. Identify logical entities (the “things” and their operations) from

the requirements statements
• “Noun analysis”
• And implied entities; also group the entities if there are a large number

(for namespaces later)
2. Make these into variables with specific data types (integer, long,

boolean, custom object)
3. Identify starting point for problem (what do I want to solve?)
4. Determine what entities and logical operations on each the

starting one needs to complete the solution
• Identify relationships between entities (1:1, 1:N, “is-a”)

5. For each logical operation, determine inputs and outputs and
types of looping constructs (pseudo code flow)

• If I have all the inputs and know the output, then I should be able to
compute the small problem

6. Analyze entities for non-functional requirements – exceptions,
security… per coding standards

2-15

Building a prototype
• Define initial scope of prototype

– Which user scenarios are high risk and need more definition?
– Which user scenarios exercise most of the entities?

• Build the prototype
– Start all of the assemblies (shells)
– User scenarios converted to screen layouts
– Business entities converted to code objects and data schema elements

• Complete the specification
– Objects replace entities, now have methods and members

• Relationships added
• User interface elements completely defined for all scenarios – UI

has methods (events) and members (controls) and relationships
(redirection)

– Database schema added
– Design standards agreed on

2-16

Bigger examples:

Traveler(s) Email

Internet

Expedia
MSN

U
til

ity

Gateway
Servers

S
Q

L

W
eb

eM
ai

l

Router

CORRE

WTP

Frame Relay

Tickets

W
T

P
 L

A
N

Ticket Printer

Airborne
UPS
USPS

Courier

E
xc

ha
ng

e

W
or

ld
S

pa
n

G
at

ew
ay

Agents

IV
R

WorldSpan

Airlines Hotels Car
Rental

Front End
Processor

Main CRS

Email

Telephone System

Tr
av

el
 A

ge
nc

y
N

et
 (X

.2
5)

Many Direct Connections

Web
Browser

Expedia
Tickets

4 D
irect Leased Lines

(X.25)

OPs
Tools

expedia.com

2-18

Summary
• What we covered

– Identify what you don’t know
– Get to the spec quickly and completely
– Every system was built by mortals
– What questions to ask early on in your projects

• Why its important
• Resources

– Functional specs samples are online
– Look at your team assignments and figure out what you

don’t know
– Start communication with your customer and building a spec

CSE 498, Collaborative Design 2. Technical Specifications

Wayne Dyken & Brian Loomis 2-4 Department of Computer Science and Engineering

2-19

BACKUP SLIDES

2-20

Another example: MATRIX

“XML Implementation of American Voices”

American Voices is a collection of 20th century digital objects that spans the
vista of American politics and culture. This collection is derived from the

libraries, archives, and other sources across the country and will
continue to grow as new sources of historical materials are found. The

metadata for each digital object is stored currently in a relational
database (MYSQL) and the digital objects reside on the MATRIX disk

farm. Up to this point, MATRIX has primarily used MYSQL and PHP to
search and deliver these digital objects, but has recently completed a
native XML implementation of this architecture. The capstone project

would entail building on this work by constructing a native XML
implementation of American Voices that would allow users to browse,

search, and retrieve objects from the collection. The project would
require a team to convert database records into XML and use Cocoon
(XML publishing framework), eXist (native XML database), XSL, and

Java to search and deliver the collection.

2-21

Two Views of Enterprise Apps

FrontEnd - 207.x.x.x

Corp LAN

BackEnd LAN - 10.x.x.x

“Services”.Microsoft.COM

CWAPPSNET

Internet

MSCOM .NET STRATEGY - ARCHITECTURE OVERVIEW

Microsoft.Com

WLBS Clusters (8x10)

COMPONENTS:
 - W2K, IIS 5.0, .NetFramework

 - .Net Web Services (.asmx & .dll)
 - Security: HTTPSoap, Limited

 Discovery(Machine.Config)

CORP Content Developers

SQL B/U

Log Shipping

SQL Consolidator

SQL Replication

DATABASES:
 - Content Repository

- Security Systems
 - Taxonomy & WorkFlow

NETSERVICES

 - Infrastruce Web Services
- Platform Web Services

COMPONENTS:
 - W2K, IIS 5.0, .NetFramework

 - .Net Web Applications
- Content

WLBS Clusters (2x3)

- .Net Web Apps
 (Administration Tools)

- Customer Apps
 - Partners/Vendors

Communication Channel: HTTPSOAP

WLBS Clusters (2x3)WLBS Clusters (1x3)

Communication Channel:
HTTP & HTTPSOAP

