Fall 2004 Capstone

Video Control System

Kabe VanderBaan

Motorola Labs

August 25, 2004

Version 0.2

Table of Contents

11
Introduction

12
Problem

12.1
Definitions

13
Solution

13.1
Architecture

13.2
Video Server

23.2.1
Configuration

23.2.2
Command Line Options

23.2.3
VISCA Driver

23.3
Video Control Client

33.3.1
User Interface

33.3.2
Configuration

33.3.3
Command Line Options

33.4
Database

33.5
Admin Client

33.6
Design

33.6.1
Execution

34
Scenarios

45
Requirements

45.1
Minimum Requirements

45.2
Milestones

45.2.1
Milestone 1

45.3
Tools

45.3.1
Eclipse IDE

45.3.2
ANT

45.3.3
RMI Plugin

45.4
Technologies

55.5
Useful Links for project

55.5.1
XML

55.5.2
Berkeley DB

55.5.3
Java Networking

55.5.4
Example Projects

56
Code Specifics

56.1
Files And Packages

56.2
Interfaces

57
Contacts

Revision History

	Version
	Date
	Change Description

	0.x
	
	Releases for review

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

1 Introduction

This document describes a live and stored Video Control System (VCS) to be developed by students at Michigan State University. This is a semester project for fall 2004.

2 Problem

Develop a system where:

· There exist multiple video sources in a system (i.e., live cameras and stored video) that are accessible via one or more servers. Each server can have multiple cameras connected and can also transmit multiple stored videos (e.g., using a web server).

· Some cameras on each server may be capable of being controlled over a network (i.e., pan-tilt-zoom enable (ptz-enabled)).

· A client application can query for and locate each video source in the system using a central database.

· After locating the video source in the database, the client application downloads the appropriate Graphical User Interface (GUI) from the identified server.

· If the video source is a ptz-enabled camera, then the client must display a clean, usable GUI that can control the camera over an Internet Protocol (IP) network.

· If the video source is stored video then the client must display a GUI that allows for VCR like control (e.g., rewind or fast forward).

· If the video source is a camera that is not ptz enabled then a basic GUI is returned.

2.1 Definitions

This section defines common words that are used in this document.

3 Solution

This section describes the guidelines for a solution to the above problem.

3.1 Architecture

The architecture of the project is client/server with a database. Multiple servers (VideoServer) may exist in the system, however there is only a single VideoServer application per server. There is only one database that is shared among all control clients and servers. Multiple clients can interact with each server and the database.

3.2 Video Server

There should be a single VideoServer application per server that can control one or more ptz-enabled cameras, and source one or more stored video files. The Video Server should be configured for each video source on the machine (e.g., stored video or live camera). The VideoServer will register each of the cameras and stored video files with a central database (i.e., Berkeley DB) so that clients can locate each video source. The VideoServer should be able to enable and disable a video source (i.e., add and remove a video source from the database). Communications between the server and client will initially use Java RMI, but may be moved to another solution as the project moves further (e.g., SOAP).

3.2.1 Configuration

Server preferences and video source definitions shall be stored in a configuration file (e.g., server.pref). The file will be stored in a yet to be defined XML format and should be parsed and stored in a configuration object (e.g., ServerConfiguration.java). Initially, the configuration should be modified by directly editing the configuration file and later via the GUI on the Server.

The following preferences should be included in the server’s preference file (These may change as the project matures):

	Preference
	Description

	RMI REGISTRY ADDRESS
	The IP address of the machine running the rmi registry.

	RMI REGISTRY PORT
	The port that the registry is listening for connections on.

	RMI REMOTE_NAME
	The name that the server will use to register with the registry.

	DATABASE HOST
	The IP address of the machine running the database.

	DATABASE NAME
	The name of the database.

	DATABASE USERNAME
	The username used to access the database.

	DATABASE PASSWORD
	The password used to access the database.

	
	

	
	

	
	

3.2.2 Command Line Options

The only command line option (besides any VM specific options) should be the location of the preferences file. This should be specified as “-p FILE” (without quotes) where FILE is replaced with the absolute or relative location of the preferences file (e.g., -p pref/server.pref).

3.2.3 VISCA Driver

The VISCA protocol was developed by Sony and is used to control devices over communication links (i.e., serial). A VISCA driver that was developed by Stefan M. Strasser will be supplied to control devices that use the VISCA protocol.

Currently, the library allows for a specially formatted XML file to be read in that lists a command name with the command syntax. Currently, the VISCA driver only supports Sony cameras; the library must be extended and an XML file must be created to control Canon cameras (Note: this requirement might change).

3.3 Video Control Client

Multiple clients can exist in the system and each client can interact with one or more Servers. The client will only control a single video source at a time; therefore it will also only interact with a single VideoServer at a time. The client will initially query the database for all of the video sources in the system. This may later be extended to allow for the system to query for a subset of video sources. After receiving the video sources, a user can select a certain video source and will request the appropriate UI from the Server (i.e., Server.getUI()).

3.3.1 User Interface

The client should download the appropriate GUI, and should be capable of display any number of GUIs without configuration.

3.3.2 Configuration

Client preferences shall be stored in a configuration file (e.g., client.pref). The file will be stored in a yet to be defined XML format and should be parsed and stored in a configuration object (e.g., ClientConfiguration.java). Initially, the configuration should be modified by directly editing the configuration file and later via the GUI on the Client.

The following preferences should be included in the client’s preference file (These may change as the project matures):

	Preference
	Description

	RMI REGISTRY ADDRESS
	The IP address of the machine running the rmi registry.

	RMI REGISTRY PORT
	The port that the registry is listening for connections on.

	RMI REMOTE NAME
	The name of the server’s stub in the registry.

	
	

	
	

3.3.3 Command Line Options

The only command line option should be the location of the preferences file. This should be specified as “-p FILE” (without quotes) where FILE is replaced with the absolute or relative location of the preferences file.

3.4 Database

The Berkeley DB will be used as the Database in the system. We will supply you with a Java interface to the Berkeley DB. The Berkeley DB that will be supplied must be run on a Linux machine.

3.5 Admin Client

The admin client is a separate client that will implement the admin interface into the Server. The admin client will allow for cameras to be added and removed from the database remotely.

3.6 Design

3.6.1 Execution

4 Scenarios

Below are examples of scenarios that would use the VCS. This will be filled in at a later time.

5 Requirements

This section descries the expected functionality of the Video Control System. The minimum requirements need to be met for this to be a successful project. Milestones are key deliverables that will be met along the way.

The emphasis of this project is on a clean client GUI for ptz-control and on the ability to locate all the cameras in the system. Additionally, the Server needs to be able to communicate with the attached cameras, and register the cameras in the Berkeley DB. Therefore, until these are finished, there should not be a lot of time invested on the non-emphasis parts (e.g., the VCR like GUI, or the ability to configure the Server via a GUI).

5.1 Minimum Requirements

This section will be filled in at a later time.

5.2 Milestones

This section will be filled in at a later time.

5.2.1 Milestone 1

This section will be filled in at a later time.

5.3 Tools

This section describes the development tools that are to be used to develop the system.

5.3.1 Eclipse IDE

An Integrated Development Environment (IDE) is not required but is highly recommended. However, any tools that you use (i.e., a GUI generator) MUST be able to integrate with the Eclipse IDE.

5.3.2 ANT

Ant is to be used for all compilation and scripting. The ant file that is created must be able to integrate into the Eclipse IDE.

5.3.3 RMI Plugin

RMI requires a special compiler and some extra steps in order to be used. All the tools to use RMI are either included with Java, or are freely available. An RMI plugin has been developed for Eclipse that eases a lot of the headache associated with RMI. Therefore, the software will aide in the development. An RMI plugin will be supplied.

5.4 Technologies

Ant

Eclipse

Berkeley DB

Java

Java RMI

5.5 Useful Links for project

These links may be useful for programming and coming up to speed on technologies used in the project.

5.5.1 XML

5.5.2 Berkeley DB

http://www.xml.com/pub/a/2003/05/07/bdb.html
5.5.3 Java Networking

http://www.cafeaulait.org/course/week12/index.html
http://www.cafeaulait.org/
5.5.4 Example Projects

This section will be filled in at a later time.

6 Code Specifics

This section describes code functionalities.

6.1 Files And Packages

6.2 Interfaces

This section describes the interfaces that exist on the Server. The interfaces described here may change as the project evolves. Each Interface should be implemented as an object on the Server.

6.2.1.1 VideoSourceControlIF

The interface that the Client uses to send control messages to the Video Server.

6.2.1.2 VideoServerAdminIF

The interface that either a local or remote client can use (note, this client is different than the Control Client) to enable or disable a video source.

6.2.1.3 VideoServerQueryIF

The interface that either a local or remote client uses to query the VideoServer.

7 Contacts

This section will contain the key contacts for each part of the project.

1

