
STATe

A Reference of the STATe.Resources.dll & System Sevices

Part I: The Clock Service

Purpose: To keep a standard of game time across all the views that are joined to the
current game.

Namespaces: STATe.Clockservice
 STATe.Clock

Classes: STATeClock

ClockController
ClockListener
TimeInfo
GameTime

Overview: The clock is designed in a server-client relationship. There is only one type
of server, the class STATeClock that runs as a system service. There are two types of
clients, ClockController and ClockListener. The function of the listener is to signal
events to the client program, and the controller causes those events. Each of these three
roles is described below.

Note: All connections are made on Port 400.

STATeClock
The clock service sends a serialized TimeInfo object out every 200 milliseconds to any
registered listeners. This TimeInfo object has only one member, a long integer that is the
amount of time, in seconds, that has elapsed during the game. The service uses
Asynchronous socket connections, and should have no problem handling as much as 15
(this is a very low estimate) current connections.

The service should be restarted for every new game, as each service can only keep track
of one game clock at a time. When started, the service is passed a string to store as a pass
phrase. If the service ever receives this pass phrase from a client, then that client will be
boosted into a privileged mode, where the client is able to start, stop, & drift the clock.

There are special values that can be sent in the TimeInfo object that signal clock control
events. If the value is -1, this means the clock has been stopped. If the value is -2, this
means the clock has been started.

ClockListner
The ClockListener class is used as a client to receive game clock events, and to perform
callbacks on those events. The events that the listener currently understands are:

start: Triggered whenever the listener receives a -2 from the clock service. (clock
started)

stop: Triggered whenever the listener receives a -1 from the clock service. (clock
stopped)

update: Triggered whenever the listener receives a time from the clock service.

Each of these events can be assigned a callback function using the delegate: void
ClockHandeler(ClockListener sender, long gametime).

To begin receiving updates and start triggering events, a ClockListener must connect to
the clock service by calling the void Connect(System.Net.IPAddress ip) member, where
the address supplied is the IP address the clock service resides on.

Once connected, events will be triggered as they are received. Additionally you may use
the function get_game_time() to get the last valid clock value received from the clock
service. (See DBConnection for a possible use of this function).

ClockController
The ClockController class is the client that can take control of the clock service. To
connect, use the void Connect(System.Net.IPAddress ip, string password) member,
where the address supplied is the IP address the clock service resides on, and the
password is a the string that was passed to the service on it’s start. (This exists so that any
program on any machine could take control of the clock, although this feature has not
been used yet.)

Once in control of the clock, the following four functions are useful.

Start(): Starts the clock if it’s stopped, otherwise does nothing.
Stop(): Stops the clock if it’s started, otherwise does nothing.

Increment(): Drifts the clock forward one second (Time elapsed +1).
Decrement(): Drifts the clock backward one second (Time elapsed -1).

Note: A Clock controller has no events, and does not receive information from the clock
service. As such, if you require updates and control from/to the clock, then you will need
to have both client roles within your program.

GameTime
Since the clock service sends an amount of time elapsed during a game, it is up to the
program to decide how to interpret that time. The GameTime class is a versatile solution
to this problem, as it allows for different types of game clocks to be used.

When calling the constructor you must pass it a ClockTimingSettings object (from the
STATe.Collections.Settings namespace). This object has values for the number of
periods in a normal game, the number of seconds in a normal period, and the number of
seconds in an overtime period. It is these values that the GameTime class uses to interpret
the data received from the clock service.

Common usage of this class involves a callback to an update even from a ClockListener
object, and passing the gametime to the bool Update(long newTime) member of
GameTime. This function will recalculate the interpretation of the game time if the
supplied time is different than the previously supplied time, and return true. If the
supplied time was not different, then it will return false.

Once update has been called, you may use the following members for game clock
information.

int period: Gets the current period
int minutes: Gets the current minutes left in the period
int seconds: Gets the current seconds left in the period

long SecondsInPeriod: Gets the seconds in a normal period
long SecondsInOver: Gets the seconds in an overtime period

int PeriodsInGame: Gets the number of periods in a normal game
string ToString(): Returns a string that has the format MM:SS where MM is the

minutes left in the period, and SS is the seconds left in the
period

Note: A nice feature to implement in the future, would be an event along the lines of
end_of_period, which would occur when the end of a period came about. Programs using
this class could assign callbacks to this public event, and handle this situation.

Part II: Game Broadcaster & Searcher

Purpose: To allow computers on the local subnet to join a game and participate in the
STATe process.

Namespaces: STATe.Net
 STATe.Collections.Settings

Classes: GameSearcher
 GameBroadcaster
 GameSettings

Overview: GameBroadcaster is a definite misnomer, as it doesn’t broadcast at all.
Instead it takes the role of server, in a server-client relationship with GameSearcher
playing the client role. Their entire purpose is to transmit a serialized GameSettings
object from the server to the client. These two roles are defined below.

Note: GameSettings is a collection of all settings that a joiner might need to complete its
function. Its scope is too large to cover here, but it is documented in the Namespace
overview section of the technical specifications.

GameBroadcaster
The GameBroadcaster runs in a server mode, using asynchronous socket connections to
give out a GameSettings object to any client (GameSearcher) that requests it. Once a
connection is accepted, it sends the serialized GameSettings object immediately, and then
closes the connection.

To use the GameBroadcaster you must first call the Constructor
GameBroadcaster(STATe.Collections.Settings.GameSettings info) and pass it the
GameSettings object to broadcast. Finally, you must call the BeginBroadcast(IPAddress
ip, int port) member, where the address is the IP you wish to broadcast from (in case of a
machine with two IP address and the port is the port to listen on. This will start the
listening process, to hand out the GameSettings information.

Once you have called BeginBroadcast, the functions EndBroadcast() and
RestartBroadcast() might be useful. Their purpose is self evident.

Note: It should be evident that the Game Creator should be the one who uses the game
GameBroadcaster class. . This is shown by the connections between the Game Creator
and GameBroadcaster parts in the diagram.

GameSearcher
The GameSearcher class acts as a client to the GameBroadcaster. It’s main intent is to be
ran as a separate thread (thus eliminating any blocking & waiting when attempting to
connect to an IP address that does not have a GameBroadcaster.

GameSearcher is somewhat limited in its abilities, as it is tightly bound to the
GameListView control class (A control to display GameSettings objects, see the Join
Game Wizard Form). Upon successful receive from a GameBroadcaster, the add
member of GameListView is called in order to display the found game. THIS
COUPLING SHOULD BE REMOVED IN A FUTURE VERSION.

The usage of GameSearcher begins with its constructor, which is passed many
arguments. Their names and purposes are:

GameListView glv: A GameListView object to add a successfully retrieved
GameSettings object.

IPAddress ip: The IP Address to search for a GameBroadcaster.
int port: The Port to search for a GameBroadcaster.

thread_end_signal end: A special delegate that is called when the thread
completes (see below).

The member function void CheckIPForGame() does all of the work, and should be used
as the main entry point of a thread.

The thread_end_signal delegate is of the form void thread_end_signal() and it is simply
called when the thread completes, whether or not a GameSettings object was received. It
is currently used to update the progress bar on the Join Game Wizard, but any function
cal be passed.

Note: Be sure to use the same port in both the GameSearcher and GameBroadcaster.

Note: It should be evident that the Game Joiners should be the ones using the
GameSearcher class. This is shown by the connections between the Game Joiner and
GameSearcher parts in the diagram.

Part III: The Real Time Database

Purpose: To announce updates as the database receives them to any clients registered for
those specific updates.

Namespaces: STATe.DB.RealTime

Classes: STATeRTDB
 RTDBConnection
 StatUpdate

Overview: The Real Time Database works in a Server-Client relationship, with the
STATeRTDB class running as a system service performing the Server Role. The
RTDBConnection class performs the client role, and serialized StatUpdate classes are the
information they pass between each other. These roles are defined below.

StatUpdate
This class gets passed between the server and clients, and contains all information
regarding a specific update. The members of the class and information they contain:

long gameid: The id of the game, that the update occurs in
long playerid: The id of the player that the update happens to
stat_type statType: The type of stat that the update represents
bool increment: True if the stat was incremented one, false if it was decremented
bool register: True if this is a register request, false otherwise

The combination of gameid and playerid should be unique to any instance of any game,
and therefore the member function string GetHashString() returns a string of the form ‘p’
+ playerid + ‘g’ + gameid. This string can be used as a hash table key to store a specific
player, in a specific game’s stat data. See RTDBConnection for a more specific example
of how to use this.

Note: byte [] GetByteArray() member function returns the serialized version of a
StatUpdate class, which is ready to be sent through a socket.

STATeRTDB
This system service receives serialized StatUpdate objects and then forwards them to any
clients registered to the unique gameid and playerid combo contained in that StatUpdate

object. It uses a hash table with the GetHastString() as it’s key, and the object associated
with key is an ArrayList of sockets that are listening for this type of update.

Much of the STATeRTDB code is similar to the clock service code.

Note: If a client disconnects, all its registrations are removed.

RTDBConnection
This class works as the client side to the Real Time Database (RTDB). You can connect
to the server with the member function void Connect(
STATe.Collections.Settings.RTDBSettings settings) where settings is a settings object
that contains the IP Address of the RTDB server.

Once connected the following functions will begin to function:

RegisterForUpdate(long player_id, long game_id)

Lets the server know that you want to receive all updates for the player with the
specified id, for the game with the specified id.

SendUpdate(STATe.DB.RealTime.StatUpdate update)
 Send a raw StatUpdate object to the server.

AddStat(long player_id, long game_id, STATe.Collections.stat_type type)

Send an update to the server announcing the player with specified id, in the game
with specified id, has gained 1 count of the specified stat.

RemoveStat(long player_id, long game_id, STATe.Collections.stat_type type)

Same as AddStat, but announces that the player has lost 1 count of the specified
stat.

The updates that you are registered can be used by assigning a callback to the update
event. The callback delegate is of the form RTDBHandeler(Object sender,
STATe.DB.RealTime.StatUpdate data). It is expected that you use the data parameter
and its members playerid & gameid to increment or decrement a stat on the
corresponding player. It is SUGGESTED that you use a hash table to store your players
and that you use the GetHashString() function of StatUpdate as a key for your hash table.
This will allow simple code like the following to perform tasks quickly:

Example code of RTDBConnection update event:

Player p = playerTable[data.GetHashString()];

if(Player p != null){
 if(data.increment){
 p.stats[data.statType]++;

}
 else{
 p.stats[data.statType]--;

}
}

Part IV: The Backend Database

Purpose: To allow programs access to all the information about a game, its teams, and
its team’s players.

Namespaces: STATe.DB

Classes: DBConnection

Overview: DBConnection is the only class that talks directly to the Database. It is
extremely large, with many functions that do many different things. To help with the
complexity, this section has been broken down into the different types of database queries
you can use.

Creating a Connection
The first important note regards the parameter passed to the constructor,
DBConnection(TimeFunction tf). The Time Function delegate is a function that returns a
long integer that represents the time elapsed in a game. DBConnection gets its own
delegate for this info, because many of the functions depend on accurate to the second
game time information. However, if you are not going to be doing game time tasks (EG
only editing teams, or generating reports from previous data) then it is unnecessary to
pass a true TimeFunction delegate. Instead you may pass it a null. Throughout this
section, functions will be marked as requiring the time function, or not requiring the time
function.

Note: The TimeFunction delegate and the get_game_time() member of ClockListener
were designed to be used in tandem, and it is this function that you will often pass as a
delegate to the DBConnection.

To create a connection to the database, you must call the void
Connect(STATe.Collections.Settings.DBSettings settings) [no time function needed],
where the settings object contains information like IP Address, username, & password.
This connection will throw an exception on failed logon attempt. Also, this class
assumes that a Database named “STATe” is accessible (Select, Insert, Update, Delete
privileges) by the specified user.

One of the most useful functions available in the class is void create_tables() [no time
function needed]. This function checks the system tables of the SQL server, and creates
any tables that STATe needs that are preexisting. It does this by calling a series of sub-
level create table function. It is a good idea to call this function on any connection that
might be talking to a database that has not been set up yet. No harm will come from
calling this function on a database that is already set up.

Game Independent Time Functions
Note: None of these functions require the Game Time delegate function.

void add_team(string team_name)
Adds a team to the database with the specified name.

ArrayList get_teams()
Returns an ArrayList of Team objects, representing all the Teams in the database. The
team object’s player member is not filled (that requires a separate call to get_players()).

PlayerList get_players(long team_id)
Returns a PlayerList (Strong Typed ArrayList) of Player objects that represent players on
the team specified by the id.

void add_player(string last, string first, long team_id, short jersey, int rest_time, int
active_time)
Adds a player to the database with the specified values. The last two are optional.

void delete_player(long player_id)
Deletes the player with the id specified from the database. His stats are not deleted.

void delete_team(long team_id)
Deletes a team from the database, also deletes all player associated with that team.

void update_player(Player p)
Updates a player’s information in the database.

string getRealTimeString()
Returns a SqlDateTime string that represents the current time when the function was
called. Can be used to set specific times that a player checked out of a game. (see
check_out_player).

Game Dependent Time Functions

void check_in_player(long player_id, long game_id)
[Requires Game Time function]
Updates the database to reflect that a player is now active. This includes creating a
resting log in the resting_times table, and inserting the player into the active_players
table. In case a player was accidently checked out (the game time they checked in is the
same as the game time they checked out) the function will fix the tables accordingly. See
the figure on the next page.

void check_out_player(long player_id, long game_id, string real_time)
[Requires Game Time function]
Updates the database to reflect that a player is now inactive. This includes creating an
active log in the active_times table, and inserting the player into the resting_players table.
It uses the real_time string provided (a Sql DateTime string) as the time the player
checked out. If this is not supplied, it uses the current time as the time the player checked
out. Like check_in_player, if a player is checked out at the same game time that they
checked in, it means they never really played, and the function fixes the database table
accordingly. (see figure on previous page)

void add_stat(Player p, Game g, stat_type type)
[Requires Game Time function]
This adds a stat of the specified type to a Player during the specified game. It also
records the game time that the stat occurred.

void remove_stat(long player_id, long game_id, stat_type type)
[Doesn’t Require Game Time function]
This removes the specified stat from the player during the specified game. It removes the
last stat of this type accredited to the player for the game by using the time the stat was
accredited. If you try to remove a stat that does not exist (meaning if a player has 0 of
that stat) then it will throw an exception.

Team get_home_team(int game_id)
[Doesn’t Require Game Time function]
Returns a Team object that represents the home team for the specified game. It does not
fill the list of players for the team.

Team get_away_team(int game_id)
[Doesn’t Require Game Time function]
Returns a Team object that represents the away team for the specified game. It does not
fill the list of players for the team.

long createGame(long home_team_id, long away_team_id, string description)
[Doesn’t Require Game Time function]
Creates a game in the database, and returns the id of the game just created. This can then
be used to let game joiners know what game to add information to.

ArrayList getActivePlayers(long game_id, long team_id)
[Doesn’t Require Game Time function]
Returns an Array List of PlayerTimeInfo objects (which contain the id of the player, and
the game time they entered the game) for a specific team in a specific game. This
information can then be used as a basis for each player active time. For example, if a
player checked in at game time 5, then his current active time (in seconds) would be the
current game time minus 5.

ArrayList getRestingPlayers(long game_id, long team_id))
[Doesn’t Require Game Time function]
This returns an ArrayList of PlayerTimeInfo objects (id of the player, and current real
time of resting) for a specific team in a specific game. This time number can be use by
incrementing it for every second of real time that passes.

PlayerList getPlayersOnTeamWithStats(long team_id, long game_id)
[Doesn’t Require Game Time function]
This function works the same as get_players, but it fills the stats member of each player
object with the total stats for that game. This is useful when a game joiner joins into an
already running game (as opposed to the beginning of the game) because he can get all of
the statistical information for that game. It fills the stats member with every stat_type
(even if more stat_types are added), but be warned this query is much larger than all
others and actually takes a noticeable amount of time (about half a second to a second),
so this function should not be called often.

Note: the stat’s member of the Player class is dynamic in the sense that it is as large as
stat_type.Size value is. In fact, it is simply a unsigned integer array that uses a casting of
stat_type to integer as an index in the array. Notice that there is no
stat_type.TOTAL_POINTS, but a Player object does have a TOTAL_POINTS member.
This is because TOTAL_POINTS is an algorithm based off of number of shots made of
certain type. Simply put, the stats member of the Player class keeps track of only the
most primitive stats.

Finally, we have included the layout of the database, so that custom functions can be
added, and current functions expanded.

Part V: Overview of Current Forms
Player Statistical GUI

Purpose: The purpose of this GUI is to record the statistics during the game.

Namespaces: STATe.forms

Overview: The statistical GUI was designed to keep track of individual and team stats
during a game. The statistical GUI is also a clock listener. It receives the game time from
this service. Stats can be added at anytime. The reason this was implemented this way is
to account for human error. A stat does not have to be recorded at the time it happens.
However, the game time the stat was recorded is kept in the database. This could be used
in future versions to compute a timeline of the game. This GUI was also designed to be as
user friendly as possible. In the fast paced game a user does not have time for many
complex features. Simplicity was a major factor in its design.

 The constructor for this class takes in a game settings object along with a role.
The role is weather this instance of the GUI will track the home or away team. Then the
constructor connects to the game clock so it can receive the game time. After the clock is
initialized a connection to the database is established and the players in the database are
loaded into the GUI. If there are more slots in the GUI then players, the empty slots are
disabled so that stats cannot be tracked if there is not a player associated with that slot. If
there are more players the slots the first 15 are loaded.
 Another useful function in this GUI is the Change Curser function. This function
takes in a Boolean variable that symbolizes adding stats or decreasing stats. True is
decrement a stat and false is increment a stat. The function changes the way the cursor
looks when the minus stat button is pushed. This is to give a visual message to the user
that clicking on a stat button will now decrement a stat instead of increment a stat. This
allows a user to correct a mistake made in recording statistics throughout the game.
 The Populate Line function takes in an index and a player object. The function
first checks to see if the player has 4 fouls, if the player does a visual warning is
displayed for that player (the foul statistic background color changes to yellow). If a
player acquires 5 fouls the color changes to red to symbolize the player fouled out. If a
player has less the 4 fouls the background color is white. Then the function populates the
stats of that player into the appropriate fields. These fields include the players name,
number, shooting statistics, and personal fouls.
 The Update Team is also another useful function takes in no arguments. This
function updates the stats for the entire team. It checks the number of team fouls and
displays a warning if the team is about to enter the single or double bonus foul shots.
Then the function computes the stats for each type of shot made or missed and computes
totals for the entire team. The updated information is then displayed in the appropriate
fields in the GUI.
 Sometimes a user might want to distinguish certain stats from other stats. The
Change Color function can be used. This function takes in an index to denote which

button was pushed. Then the function changes the background color to highlight specific
stats. This enables easy visualization of stats.
 The Player Activation function takes in an index into a player list. The function
then disables or enables a user to update stats for that player. This can be useful if a
player fouls out and no more stats can be recorded for that player.

The functions Personal fouls, change one pointers, change two pointers and
change three pointers all take in an index into the slot to denote the stat to update and also
a player object to distinguish the player. A slot is made up of arrays of buttons, dropdown
boxes, and text boxes. It is a container class developed to hold the stat objects that are
recorded as one object. The function then updates the stats in the GUI and the GUI
updates the database.
 The mouse down functions takes in a sender object. This is the button that was
pressed. It then changes the background color to denote that the button was pressed. This
gives the user a visual assurance the button pressed event has occurred.
 The personal fouls checked function takes in a sender object also. This function
updates a player’s personal fouls. It finds the index of the player and writes a record to
the database for that player. It then updates the team stats to reflect this change.
 The player click functions update the shooting statistics. They also take in a
sender object that represents the button clicked. The function finds what button was
pushed, this denotes the stat that needs to be updated, and indexes into the array. It then
finds the player that needs to be updated and writes the record to the database. Again the
update team function is called to show the changes.
 The selected index changed function allows users to switch the order player
appear in the GUI. This takes in a button object also. This is done by a dropdown menu
where the player selects the player they wish to appear at the current location. If a player
being swapped is already displayed in the GUI the two players swap locations otherwise
the new player takes the place of the old player.
 The subtract click function again takes in a button object. This function sets a flag
that changes the statistic buttons from increasing stats to decreasing stats. This allows a
user to undo accidental clicks to player stats.

Player Tracker GUI

Purpose: The purpose of this GUI is to record a player’s active and resting time during
the game.

Namespaces: STATe.forms

Overview: This GUI was developed to keep track of a player’s active and resting time.
This GUI also acts as the clock manager. It is responsible for starting and stopping the
game time. (See clock service). Five players must be checked in for the clock to start.
This ensures a full team is in the game. For ease of use a user can have players who are
about to enter or leave the game in pending status (flashing). When the clock is stopped
these players will automatically be subbed in or out of the game. This GUI also displays
visual warnings about a player’s active and resting time. This allows the user to manage
player time more efficiently.

The constructor for this GUI takes in game settings and a role. This role again is
home team or away team. It then initializes the slots it will use for each player. Then the
number of players checked in is set to 0. The constructor then gets the current time from
the database to use as a base time. The base time is used to compute resting time of
inactive players. The clock service is then configured and the GUI also becomes a
listener to this service so it can display the game time. A connection to the database is
created and a roster is loaded into the GUI. The real time counter, which is initialized to
the base time, is then started. This is used to keep track of a players resting time.

The check in out click function takes an index into the player array. This function

checks to see if there currently is a player in this slot. This function then calls the
cmdcheckin or cmdcheckout depending on the status of the player when the clock was
stopped.

The cmdcheck in and cmdcheck out functions take the same index into the player
array. This identifies the player. The first thing the functions check is if the player is
already checked in or out. If the player is nothing needs to be done and the function
returns otherwise the function checks if the clock is started. If the clock is stared and a
player is trying to check in or out the player is put in pending status and the player will be
substituted at the next clock stop. If the clock is stopped the and player is checked out
the number of players in the game is decremented. The function then checks that there
are 5 players checked in. If there are not 5 players checked in the clock start button is
disabled until 5 players are checked in. The function then checks that the player actually
played and was not just subbed in then out with out actually playing. This was a tricky
situation to try to handle. Records for this player do not need to be kept. This allows the
coaches to change there minds about subbing players in and out. The next step is to
compute the active/rest time depending if the player was checked in or out. The player
resting/active labels are then updated to show the current status of the player. This also
includes the active and resting time and the arrows that display if a player is checked in
or out. The last part of this function calls the warnings function, which displays visual
warnings about a player’s time.

The cmdinout function takes a button object as input and calls the cmdcheckin or
cmdcheckout depending if a player checks in or out. This is the function that allows the
cmdcheckin/out function to know which player to check in or out. This is done using a
switch statement.

The format time function takes in an int and formats it into a string that represents
game time in the form of mm:ss this is used to display the time remaining in the game.

The next function is the issue check in out warnings. This function insures that 5
players are always checked in before the clock can be started.

The load roster function connects to the database and loads the players into the gui.
The check out all function checks out all the players that are currently checked in.
The start stop click function starts or stops the clock by calling the stop or start

functions.
The activate warnings function enables or disables visual warnings
The timer tick function takes in a game time and updates the playing time and rest

time of each player. This function also updates visual warnings if they are needed.
The clock up and down functions do what they say increment or decrement the clock.

This allows the game clock in the program to sync with the actual game clock at the
stadium.

The period end function checks all the players out.
The 8-ball function was in Dr Dyksen’s original program and we kept it for historic

reasons.

Bench View GUI

Purpose: The purpose of this GUI is to display the information collected by the other
GUIs.

Namespaces: STATe.forms

Overview: The bench view was designed as a simple way for the coaches to see up to
date statistics for their players. There is no user interaction with this GUI. It is strictly to
display information. The data is kept in the database and sent to the GUI through a
TCP/IP socket. There are visual warnings on the GUI about players playing time and
fouls.

The constructor for this GUI also takes in a game settings object and a role. The role
again is also to distinguish between home and away team. The constructor then sets up
slots to hold active and inactive players. Active players are displayed above inactive
players. The GUI then connects in with the clock service to receive the game time. It also
connects in with the database to load the current data into the view and also so it is able
to receive the updated data as it is recorded.
 The update clock function receives the updates from the clock service to display
the game time on the GUI.
 The start clock function clears out all the players from the GUI slots and
recomputes weather the player is active or inactive. This is to make sure that it is
displaying the current players in the game as being active and the current-resting players
as resting. This also forces the statistics to be updated also.
 The timer tick function is used to update the resting time of the players resting.
Each time this function is called resting players resting time is recomputed from the base
time that was initialized when the started to rest. This is the offset used to compute the
current time the player has rested.

The rtdb_update function receives the updated statistics and updates the player’s
stats in the view. This function uses the enumerated stat types to increment or decrement
the player’s stats. The function receives a stat update object. Inside this object is the data
that needs to be updated along with the player id. The function then gets the id of the
player to update out of this object and increments or decrements the stat depending on the
weather the object sent in is for an increment or a decrement.

Part VI: The Appendix

What follows, is a more Class level oriented technical specification, as opposed to the
previous designer oriented specification. This sections is more like schematics as
opposed to actual use, however it gives a good approximation to the complexness of the
entire project.

STATe FORMS

Class AddTeam

Public Members

teamName name of team to add.
Public Member Functions
 public AddTeam()
Private Members

Button cancel_button
Button ok_button
Label label2 Team Name
TextBox teamname used to insert new team name

Private Member Functions
void label2_Click(object sender, System.EventArgs e)

ClassBenchGui
Public Member Functions

BenchGui(STATe.Collections.Settings.GameSettings gs, STATe.Collections.roles role)

constructor for bench GUI set up active and in active players connect to database and clock service

Private Members

long myTeamId Team id
Button b_Exit exit

 Label label13 Active Players
Label label14 3 points
Label label15 2 points
Label label16 1 point
Label label17 personal fouls
Label label18 1 point shooting percent
Label label19 2 point shooting percent
Label label20 3 point shooting percent
Label label21 current time
Label label22 Resting Players
Label label23 total points
Label label31 total time
Label label32 PLAYER STATS------

GroupBox groupBox1 field labels

// Container components
BenchGUIPlayerPanel panel0
 …

 BenchGUIPlayerPanel panel12 player stats panel

BenchGUIPlayerPanel activePanel1
 …
BenchGUIPlayerPanel activePanel5 active players stat panel
BenchGUIPlayerPanel[] myRestingPanels array of panels for resting players

 BenchGUIPlayerPanel[] myActivePanels array of panels for active players

 Timer timer1 local timer

ClockListener myCL Listener for updates from clock service
 GameSettings myGameSettings game settings
 DBConnection dbc database connection
 RTDBConnection rtdb real time database connection
 Hashtable myPlayers hash of players
 Label teamname
 GameClock myGameClock game clock

Private Member Functions
 void Clock_Update(STATe.Clock.ClockListener sender, long gametime)

 update game time

void Clock_Start(STATe.Clock.ClockListener sender, long gametime)
start game time go through active and inactive players update appropriately

void timer1_Tick(object sender, System.EventArgs e)
increment resting time for inactive players

void rtdb_update(object sender, STATe.DB.RealTime.StatUpdate data)
update database with new data

Class ClockSettingsView
Public Member Functions

ClockSettingsView(STATe.Collections.Settings.ClockSettings Csettings)
used to see if there are already any clock services running also passwords for the service

can be set here
Private Members
 Button Button1 ok
 Button Button2 cancel
 Label label1 clock server

Label label2 confirm
Label label3 password
Combobox Isp Drop down box with available game clock

server ip addresses
Textbox passA password for game clock server
Textbox passB confirm password for game clock server
GroupBox groupBox1 server settings
GroupBox groupBox2 game clock settings
Label label4 periods per game
Label label5 time in periods
Label label6 overtime
Label label7 “” between minutes and seconds
Label label8 “” between minutes and seconds
Label label9 clock type
TextBox periodsPerGame enter the number of periods per game
TextBox MinPerPeriod the number of minutes per period
TextBox MinPerOver the number of minutes per overtime
TextBox SecsPerPeriod the number of seconds per period

TextBox SecsPerOver the number of seconds per overtime
ComboBox ClockTiming

Private Member Functions
 void button1_Click(object, System.EventArgs)

 checks passwords match

 void comboBox1_SelectedIndexChanged(object, System.EventArgs)

 convert inputs to strings

Class DatabaseSettings
Private Members

button_ ok
 Button button_cancel
 Label label1 Database Server
 TextBox db_server_address allows location of server to change
 Label label2 tells what server ip resolves to
 Label db_server_ip
 Label label3 User Name
 TextBox db_user_name user name for connecting to database
 Label label4 Password
 Label label5 Confirm
 TextBox db_pass_a password for database
 TextBox db_pass_b confirm password for database

Button button1 set to Local set database server to local computer

Private Member Functions
private void button_ok_Click(object sender, System.EventArgs e)

Checks both passwords match

private void db_server_address_Validated(object sender, System.EventArgs e)

 Validates that the database servers ip address can be resolved

private void button1_Click(object sender, System.EventArgs e)

set local computer as database server

Public Member Functions
 DatabaseSettings(STATe.Collections.Settings.DBSettings settings)

 Creates a form of the current database settings.

Class EditPlayer
Private Members

Button ok
 Button cancel
 Label label1 First Name
 Label label2 Last Name
 Label label3 Number
 Label label4 Rest Time
 Label label5 Active Time
 TextBox first players first name
 TextBox last players last name
 TextBox number players number
 TextBox activeTime playing time before red warning appears
 TextBox restTime required rest time before player can return
 Label label6 seconds

 Label label7 seconds

Protected Member Functions
void populate()

assign values from textboxes to variables

Private Member Functions
void number_TextValidated(object sender, System.EventArgs e)

check that player number is between 0 and 99

void restTime_Validated(object sender, System.EventArgs e)

check that rest time is a positive value

Class GameInfoView
Public Members

GameInfoView(STATe.Collections.Settings.GameSettings info)
Constructor displays current settings about the game
Home team, Away Team, Clock settings, Database info

Private Members
GroupBox groupBox1 Game Specific Info

 Label label1 Descripton
 Label game_description
 Label label2 Home Team
 Label label3 Away Team
 Label game_away_team
 Label game_home_team
 Button button1 ok
 GroupBox groupBox2 Clock Info
 Label label4 Clock IP
 GroupBox groupBox3 Database Info
 Label label5 Database IP
 Label label6 Username
 Label clock_ip
 Label db_ip
 Label db_user
 GroupBox groupBox4 Real Time Database Info
 Label label7 Database IP
 Label RTDB_ip
 Label label8 Description

 Label label9 Period
 Label label10 Period Length
 Label label11 Overtime
 Label Clock_description
 Label clock_period
 Label clock_periodLength
 Label clock_overtime

Class JoinGameWizard

////////Private Members
Button cancel

 Button back
 Button next
 Button finish
 Panel panel1 Pick a Role to Use
 Button advanced
 Panel advance_panel
 Label label2
 Label label11
 ImageList imageList1 preview of each role
 Button get_games
 ComboBox ips
 IContainer components
 private int position
 Panel panel2
 Label label1
 GameListView games
 private int threadcount number of threads searching subnet
 ProgressBar searchprogress display search progress
 Label search_progress_label
 Panel panel3
 Label label3
 private bool first
 Label label4
 Label label5 STATs Input
 RadioButton role_bench_home choose bench role home team
 RadioButton role_stats_home choose stats role home team
 RadioButton role_bench_away choose bench view away team
 RadioButton role_stats_away choose stats role away team
 PictureBox pictureBox1 box to display preview

 private bool finished is wizard finished

Public Member Functions
public JoinGameWizard()

public STATe.Collections.Settings.GameSettings myGameSettings
public STATe.Collections.roles myRole

Private Member Functions

private void search_for_games()

 Search subnet for available games

private void end_search()

private void refresh_click(object sender, System.EventArgs e)

 Search subnet again for available games

private void advanced_Click(object sender, System.EventArgs e)

 Show or hide advanced options

private void populate_ip()

 Add valid ips

private void games_VisibleChanged(object sender, System.EventArgs e)

private void games_Click(object sender, System.EventArgs e)

 Make sure a game was selected then enable next button

private void next_Click(object sender, System.EventArgs e)

 Choose to track home or away team

private bool check_next()

private void back_Click(object sender, System.EventArgs e)

 Allows user to back track though menus for setting up a game

private void role_Click(object sender, System.EventArgs e)

 Makes sure a role was selected

private void games_DoubleClick(object sender, System.EventArgs e)

private void finish_Click(object sender, System.EventArgs e)

 Finish setup of game

Class MainWindow
Public Members

Public Member Functions
public MainWindow()
 Constructor calls SetUp() and loadSettings()

public void MenuNewGame_Click(object sender, System.EventArgs e)
 Quits current game starts new one

public void MenuJoinGame_Click(object sender, System.EventArgs e)
 Join an existing game

Private Members
 DBSettings myDBSettings database settings
 ClockSettings myClockSettings clock settings
 RTDBSettings myRTDBSettings real time database settings
 MainMenu mainMenu1 menu bar
 MenuItem menuItem1 menu item Database
 MenuItem menuItem3 menu item STATe
 MenuItem MenuNewGame new game in menu
 MenuItem MenuJoinGame join game in menu
 MenuItem menuItem4 menu item Game
 StatusBar statusBar1 status bar for broadcast
 StatusBarPanel BroadCastingStatus status of broadcast
 MenuItem menuItem5
 MenuItem menuItem7 menu item settings
 MenuItem menuBroadcasting menu for broadcast options
 MenuItem menuDBSettingsA menu for database settings
 MenuItem menuEditTeam menu for edit teams
 MenuItem menuDBSettingsB menu for database settings
 MenuItem menuClockSettings menu for clock settings
 ServiceController ClockServiceController clock controler
 ServiceController RTDBServiceController real time database controler
 MenuItem menuRTDBSettingsA real time database menu
 MenuItem menuRTDBSettingsB real time database menu
 SetUp mySetUp
 StatusBarPanel ClockStatus clock status
 StatusBarPanel RTDBStatus real time database status
Private Member Functions

private void loadSettings()

 Default connect to wonderwoman.cse.msu.edu server for this project)

private void MainWindow_Closing(object sender, System.ComponentModel.CancelEventArgs e)

 Close main window

 private void menuItem2_Click(object sender, System.EventArgs e)

 Opens a new team player editor

private void menuBroadcasting_Click(object sender, System.EventArgs e)

 Used to start or stop a broadcast

private void menuDBSettingsA_Click(object sender, System.EventArgs e)

 Create a database settings form

private void menuClockSettings_Click(object sender, System.EventArgs e)

 Create clock settings form

private void menuRTDBSettingsB_Click(object sender, System.EventArgs e)

 Create a real time database settings form

 private void Tracker_Closed(object sender, EventArgs e)

 exit and shutdown database and clock service also enable new game wizard

Class NewGameWizard
Public Members

public STATe.Collections.roles myRole
 role to play player tracker, stat tracker, bench view

public STATe.Collections.Settings.GameSettings GameSettings
 information needed to start a game teams, game id, database settings ect.

Public Member Functions
public NewGameWizard(STATe.Collections.Settings.DBSettings dbSettings,
STATe.Collections.Settings.ClockSettings.Settings,STATe.Collections.Settings.RTDBSettings
rtdb)

Set up a new game

 private void next_Click(object sender, System.EventArgs e)
 move to next window in the game wizard

private void back_Click(object sender, System.EventArgs e)
 move back a window in game wizard

 private void update_teams()
 Update the teams in the combo box of the game wizard

private void update_players(long teamid, PlayerListView plv)
 Update the players listed in the game wizard

private void cancel_Click(object sender, System.EventArgs e)
 cancel wizard

 private void finish_Click(object sender, System.EventArgs e)
 Finish wizard

private void HomeTeamCombo_SelectedIndexChanged(object sender, System.EventArgs e)
 If the home team is changed update_players is called

private void AwayTeamCombo_SelectedIndexChanged(object sender, System.EventArgs e)
 If the away team is called update_players is called

private bool checkNext()
 checks required info is selected before next is enabled

private void panel2_validate(object sender, System.EventArgs e)
 enables next

private void advanced_Click(object sender, System.EventArgs e)
 hide or show advanced options

private void panel3_Paint(object sender, System.Windows.Forms.PaintEventArgs e)

private void db_settings_Click(object sender, System.EventArgs e)

private void clock_settings_Click(object sender, System.EventArgs e)

 private void rtdb_settings_Click(object sender, System.EventArgs e)

Private Members

private RTDBSettings myRTDBSettings current settings for real time database
 private DBSettings myDBSettings current setting of database
 private ClockSettings myClockSettings settings for clock

 private bool finished = false
 private long gameID game id
 Button finish finish new game wizard
 Button next go to next screen in game wizard
 Button back go back a screen in game wizard

Button cancel cancel game wizard
 Panel panel1
 private int position position in game wizard (screen num)

private System.Collections.ArrayList panels
 Label label1
 Label label2
 Label label3
 Label label4
 Label label5
 ComboBox AwayTeamCombo select away team
 ComboBox HomeTeamCombo select home team
 Label label6
 Panel panel2
 Label label7
 private DBConnection dbc database connection info
 private PlayerListView awayplayers away players
 private PlayerListView homeplayers home players
 Label label8
 TextBox description
 Button advanced show/hide advanced options
 Panel advancedpanel advanced options
 Panel panel3
 Label label11
 Label label12
 Label label13
 Label label14
 Label description_label
 Label away_label

 Label home_label
 Button db_settings show database settings
 Button clock_settings show clock settings
 Label label9
 RadioButton roleHome select home team
 RadioButton roleAway select away team
 Button rtdb_settings show real time database settings
Private Member Functions

Class PlayerStatistics
Public Members

Public Member Functions

Private Members

Private Member Functions

Class PlayerTracker
Public Members

Public Member Functions

Private Members

Private Member Functions

Class RTDBSettingsView
Public Members

Public Member Functions

public STATe.Collections.Settings.RTDBSettings myRTDBSettings
 return current database settings

public RTDBSettingsView(STATe.Collections.Settings.RTDBSettings RTDBsettings)

Private Members
Button button1

 Button button2
 Label label1
 ComboBox ips

Private Member Functions

private void button1_Click(object sender, System.EventArgs e)

 check a clock service is selected

Class SetUp

Public Members

Public Member Functions

public SetUp()
Private Members
 Button newgame
 Button joingame
Private Member Functions

private void joingame_Click(object sender, System.EventArgs e)

 join a game

private void newgame_Click(object sender, System.EventArgs e)

 create a game

Class TeamPlayerEditor
Public Members

Public Member Functions
public TeamPlayerEditor(STATe.Collections.Settings.DBSettings dbs)
 connect to the database and update the teams
Private Members
 ComboBox teams select team
 Label label1
 Label label2
 Button addteam add team button
 Button deleteteam delete team button
 Private DBConnection dbc database connection info
 private PlayerListView players list of players
 ContextMenu PlayersMenu
 MenuItem menuItem4
 MenuItem menu_newplayer
 MenuItem menu_editplayer

MenuItem menu_deleteplayer
Private Member Functions

private void update_teams()

 connects to the database and updates the teams

private void update_players(long teamid)

 Connects to the database and updates players on team teamid

private void teams_SelectedIndexChanged(object sender, System.EventArgs e)

 Selected team changed update to players on new team

private void addteam_Click(object sender, System.EventArgs e)

 Add a new team to the database

private void deleteteam_Click(object sender, System.EventArgs e)

 Delete a team from the database

private void PlayersMenu_Popup(object sender, System.EventArgs e)

 Enable or disable options depending on what has been selected

private void menu_newplayer_Click(object sender, System.EventArgs e)

 Add a new player to database

private void menu_editplayer_Click(object sender, System.EventArgs e)

 Edit a player in the database

private void menu_deleteplayer_Click(object sender, System.EventArgs e)

 Delete a player in the database

Protected Member Functions
protected override void OnClosing(CancelEventArgs e)

 disconnect form database

CLOCK CLASSES

Class ClockConnector
Public Members
 public System.Net.IPAddress myIP IP address of clock service

public int myPort port of the socket
Public Member Functions
 public ClockConnector()

constructor initialize socket to NULL

public bool Connected()

is the socket connected

public void Disconnect()

disconnect the socket

Protected Members
protected int CLOCK_PORT = 400 Port listening on

protected Socket mySocket TCP/IP Socket to communicate

protected byte [] CLOCKRUNNING query server is clock running

Class ClockControler

Public Member Functions
public ClockController()

public void Connect(System.Net.IPAddress ip, string password)

 connect to clock service

public void Start()

 send message to start clock

public void Stop()

 send message to stop clock

public void Increment()

 send message to increment clock timer game time decreases

public void Decrement()

 send message to decrease clock timer game time increases

public delegate void ClockHandeler(ClockListener sender, long

gametime)

Private Members
private byte [] CLOCKSTOP info to sent to clock sevice
private byte [] CLOCKSTART

 private byte [] CLOCKINCREMENT
 private byte [] CLOCKDECREMENT

Class ClockListener

Public Members
public event ClockHandeler stop stop clock event

public event ClockHandeler start start clock event

public event ClockHandeler update update clock event
Public Member Functions
 public ClockListener()

create clock listener set current time to 0 if query before everything set

public void Connect(System.Net.IPAddress ip)

 connect to clock service

public void SetupRecieveCallback(Socket sock)

public long get_game_time()

return game time

Protected Member Functions
protected void onRecieve(IAsyncResult ar)

 when game time comes in start stop or update the clock

Private Members
private long gametime game time

private byte []m_byBuff buffer for socket

Class GameTime
Public Members
public long SecondsInPeriod number of seconds in period

public long SecondsInOver number of seconds in overtime

public long PeriodsInGame number of periods in a game

public int time current time

public int period current period

public int minutes minutes

public int seconds seconds

Public Member Functions
public bool Update(long newTime)

 set the current game time

public GameTime(STATe.Collections.Settings.ClockTimingSettings settings)

 create a game time object

public override string ToString()

 write a string in mm:ss

Private Members
private long seconds_in_period seconds in period

 private long seconds_in_over seconds in overtime
 private int periods_in_game periods in game

private int mySeconds current seconds
 private int myPeriod current period
 private int myMinutes current minutes

 private long myTime current time

STATe COLLECTIONS
Class PlayerTimeInfo

Public Members
public long id
 public long time
Public Member Functions
public PlayerTimeInfo(long player_id, long Time)

Class BenchGUIPlayerData

Public Members
 public Player player player

public bool active is player active

public bool hasPlayed has player played (helps with

player checks in then out without playing)

public long current_time current time

public string current_time_string current time as string

public long cumulative_time time played so far

public string cumulative_time_string time so far as a sting

public enum roles : int role bench view player tracker stat tracker for home

or away team

Public Member Functions
public BenchGUIPlayerData(Player p, bool Active, long baseTime, long totaltime,
STATe.DB.TimeFunction time_now)

 constructor for player data in bench gui

public void setActive(long base_time)

player is playing bench view shows active players at top of screen

public void setInActive(long baseTime)

player is no longer playing bench view shows inactive players at bottom of screen

public void increment_base()

Private Members
 private bool isActive is player active
 private long base_time base time (used resting time)
 private long total_time total time

 private TimeFunction timeNow current time

class PlayerStats
Public Members
 public uint TWO_MAKE

public uint TOTAL_POINTS total points

public uint ONE_TAKEN free throw shot taken

public uint TWO_TAKEN 2 point shot taken

public uint THREE_TAKEN 3 point shot taken

public float THREE_PERCENT 3 point % made

public float TWO_PERCENT 2 point % made

public float ONE_PERCENT free throw % made

public uint TWO_MISS 2 point miss

public uint THREE_MAKE 3 point make

public uint THREE_MISS 3 point miss

public uint ONE_MAKE free throw make

public uint ONE_MISS free throw miss

public uint ONE_POINTS points off free throws

public uint TWO_POINTS points off two point shots

public uint THREE_POINTS points off 3 point shots

public uint FOUL number of fouls

public uint ASSIST number of assists(currently not tracked)

public uint STEAL number of steals (currently not tracked)

public uint OFFENSIVE_REBOUND offensive rebound (currently not tracked)

public uint DEFENSIVE_REBOUND defensive rebound(currently not tracked)

public uint BLOCK block(currently not tracked)

public uint TURNOVER turn over(currently not tracked)

public uint this[stat_type type] current stat to use
Public Member Functions

public PlayerStats()

 creates a stat table
Protected Members
protected uint [] stat_table enumerated array of stats

class Player
Public Members
 public string lastName player last name

public string firstName player first name

public long id player id (for database)

public long teamId team id (for database)

public short jeresyNumber player jersey number

public int restTime required rest time

public int activeTime max active time

public PlayerStats stats player stats
Public Member Functions

public Player(string last, string first, long player_id, long team_id, short jersey, int rest_time, int
active_time)

 create a player

public override string ToString()

 override writing a name as a string “first last”

class PlayerList
Public Members
 public int count number of players in the list
Public Member Functions
 public PlayerList()

 make array list of players

public void Add(Player p)

 add player to list

public void Remove(Player p)

 remove player from list

public Player this [int index]

access player out of list

Private Members
 private ArrayList myPlayers list of current players

class PlayerListEnumerator
Public Member Functions
 public PlayerListEnumerator(PlayerList coll)

 create a collection of players

 public bool MoveNext()

 move through player list

 public void Reset()

 go back to beginning of list

object System.Collections.IEnumerator.Current

 for iterating through list

Private Members
 private int nIndex location in the collection

 private PlayerList collection the collection of players

class Team
Public Members
 public string name team name

public long id team id (for database)

public PlayerList players list of players on team
Public Member Functions

public Team(string team_name, long team_id, PlayerList team_players)

 create a team with players

public Team(string team_name, long team_id)

 create a team with out players

public override string ToString()
 return name of team

class Game
Public Members

 public long id game id
 public Team homeTeam home team

 public Team awayTeam away team

public string Description description of game (home vs. away)

Public Member Functions
public Game(long game_id, Team home_team, Team away_team, string game_description)

 create a game class (not to be confused with a game)

class ClockTimingSettings
Public Members

public string ClockDescription type of clock college NBA high school ect
 public long SecondsPerPeriod number of seconds per period

public long SecondsPerOver number of seconds per overtime
 public int PeriodsPerGame number of periods per game
Public Member Functions

public ClockTimingSettings(string description, long SecsInPeriod, long SecsInOver, int
PeriodsInGame)
 create an object for clock timing settings

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

public override string ToString()

 return game description

class ClockSettings
Public Members
public IPAddress ip ip address of clock

public string password password for clock
public ClockTimingSettings TimeSettings time settings for clock (college NBA high school ect)

Public Member Functions
public ClockSettings(System.Net.IPAddress ip_address, string pass,
STATe.Collections.Settings.ClockTimingSettings settings)

 settings for clock

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

public ClockSettings(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

class DBSettings

Public Members
public string Host database host name

 public string password database password

public string username database user name

public System.Net.IPAddress ip ip address of database
Public Member Functions

public DBSettings(string HostName, string UserName, string Password)
 create a database settings object

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

public DBSettings(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Private Members

 private string myHost database host name
 private string myPass database password

 private string myUserName database user name

class RTDBSettings
Public Members
 public System.Net.IPAddress ipAddress ip address of real time database

Public Member Functions
 public RTDBSettings(System.Net.IPAddress ip)

 create object of real time database settings

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

public RTDBSettings(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

Private Members
 private System.Net.IPAddress myIP ip address of real time database

class GameSettings
Public Members

public string HomeTeamName home team name
 public string Description description of game settings
 public long HomeTeamID home team id (for database)
 public string AwayTeamName away team name
 public long AwayTeamID away team id (for database)
 public long id game id (for database)
 public roles myRole role to be played (bench view player/stat tracker)

 public DBSettings myDBSettings settings for database
 public ClockSettings myClockSettings settings for clock

 public RTDBSettings myRTDBSettings settings for real time database
Public Member Functions

public GameSettings(long gameid, string description, string home, long homeid, string away, long
awayid, STATe.Collections.roles role, STATe.Collections.Settings.ClockSettings CSettings,

 STATe.Collections.Settings.RTDBSettings RealTimeSettings,
 STATe.Collections.Settings.DBSettings DataBaseSettings)

 Create object with current game settings desired

Public GameSettings(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext ctxt)

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

class ButtonArray
Public Member Functions
 public void AddNewButton(System.Windows.Forms.Button aButton)

 add a button

public System.Windows.Forms.Button this [int Index]

 return button at index

public ButtonArray(System.Windows.Forms.Form host)

 sets the form to the hose

Private Members
 private readonly System.Windows.Forms.Form HostForm;

class ComboBoxArray
Public Members
public void AddNewComboBox(System.Windows.Forms.ComboBox aComboBox)

 add a combo box

 public System.Windows.Forms.ComboBox this [int Index]

 return combo box at index

 public ComboBoxArray(System.Windows.Forms.Form host)

Private Members
private readonly System.Windows.Forms.Form HostForm;

class CheckBoxArray
Public Members

 public System.Windows.Forms.CheckBox this [int Index]
 add a check box

 public CheckBoxArray(System.Windows.Forms.Form host)

Public Member Functions
public void AddNewCheckBox(System.Windows.Forms.CheckBox aCheckBox)

Private Members
 private readonly System.Windows.Forms.Form HostForm;

class LabelArray
Public Members
 public System.Windows.Forms.Label this [int Index]

 return a label at index

Public Member Functions
 public void AddNewButton(System.Windows.Forms.Label aLabel)

 add a new button to the list

public LabelArray(System.Windows.Forms.Form host)

Private Members
private readonly System.Windows.Forms.Form HostForm;

class PanelArray
Public Members

 public void AddNewPanel(System.Windows.Forms.Panel aPanel)

 add a new panel

Public Member Functions
 public System.Windows.Forms.Panel this [int Index]

 return a panel at index

public PanelArray(System.Windows.Forms.Form host)

Private Members
private readonly System.Windows.Forms.Form HostForm;

class DBConnection

Public Members
public STATe.Collections.PlayerList list of players

Public Member Functions
public bool is_connected()

 is the database connection active

public DBConnection(TimeFunction tf)

 return time

public void Connect(STATe.Collections.Settings.DBSettings settings)

 connect to database

public void check_in_player(long player_id, long game_id)

 check player in

public void check_out_player(long player_id, long game_id)

 check player out

public void check_out_player(long player_id, long game_id, string real_time)

 check out player

public void add_stat(Player p, Game g, stat_type type)

 add a stat by player

public void add_stat(long player_id, long game_id, stat_type type)

 add a stat by player id

public void remove_stat(long player_id, long game_id, stat_type type)

 remove stat by player id

public void remove_stat(Player p, Game g, stat_type type)

 remove stat by player

Public void add_team(Team t)

 Add a team by a team

public void add_team(string team_name)

 add a tean name

public ArrayList get_teams()

 get teams

public PlayerList get_players(long team_id)

 get players on a team

public void get_players(ref Team t)

 get players

public void add_player(string last, string first, long team_id, short jersey)

 add player to team by name team and jersey number

public void add_player(string last, string first, long team_id, short jersey, int rest_time, int
active_time)

 add player to team with specific active and rest times (used for visual warnings)

public void add_player(Player p)

 add a player

public void delete_player(Player p)

 delete a player by player

public void delete_player(long player_id)

 delete a player by player id

public void delete_team(Team t)

 delete a team by team

public void delete_team(long team_id)

 delete a team by id

public Team get_home_team(int game_id)

 get home team by id

public Team get_away_team(int game_id)

 get away team by id

public void update_player(Player p)

 update player by player

public long createGame(long home_team_id, long away_team_id, string description)

 create a createGame object

public ArrayList getActivePlayers(long game_id, long team_id)

 get active players

public ArrayList getRestingPlayers(long game_id, long team_id)

 get resting players

public string getRealTimeString()

 get time off sql server

getPlayersOnTeamWithStats(long team_id, long game_id)

 get players with stats out of database (used if stat tracker or bench view joins late)

public void disconnect()

 disconnect from DB

Protected Members
 protected System.Data.SqlClient.SqlConnection myConnection; connection to SQL server

protected bool connected; connected

protected System.Collections.ArrayList myTables tables in the DB

protected TimeFunction get_time; time used insert into DB
Private Members

 private System.Data.SqlClient.SqlCommand myCommand; SQL command

class StatUpdate
Public Members

public long gameid; game id
 public long playerid; player id
 public STATe.Collections.stat_type statType; type of stat
 public bool increment; stat increase or decrease

Public Member Functions
public StatUpdate(long game_id, long player_id, stat_type stat, bool inc)
 create stat update object

public bool register;

 register with real time database

public void GetObjectData(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext context)

 serialize so data can be sent

public StatUpdate(System.Runtime.Serialization.SerializationInfo info,
System.Runtime.Serialization.StreamingContext ctxt)

 serialize so data can be sent

public string GetHashString()

 create unique hash to use as a key

public byte [] GetByteArray()

public delegate void RTDBHandeler(Object sender, STATe.DB.RealTime.StatUpdate data);

class RTDBConnection

Public Member Functions
public bool Connected()

 is the database connected

public void Disconnect()

 disconnect from database

public RTDBConnection()

 constructor for connection object to database

public void Connect(STATe.Collections.Settings.RTDBSettings settings)

 connect to d atabase

public event RTDBHandeler update;

 update event triggered

public void RegisterForUpdate(long player_id, long game_id)

 register for updates

public void SendUpdate(STATe.DB.RealTime.StatUpdate update)

 send updates

public void AddStat(long player_id, long game_id, STATe.Collections.stat_type type)
 add a stat

public void RemoveStat(long player_id, long game_id, STATe.Collections.stat_type type)

 remove a stat

Protected Members
protected Socket mySocket; socket for sending data
Protected Member Functions
 protected void onRecieve(IAsyncResult ar) what to do when data is recieved
Private Members
 private byte [] m_byBuff; buffer for socket

private System.Net.IPAddress myIP; database ip
 private int myPort; port listening on
Private Member Functions
private void SetupRecieveCallback(Socket sock)

 setup callback if data is received and connection is lost

class Slot
Public Members
Public System.Windows.Forms.CheckBoxWarningIsActiveCheckBox;

public System.Windows.Forms.Panel myPanel; panel for stats

public int ActiveTimeMax max active time

public int RestTimeMax rest time needed

public string PlayerName player name
 public string PlayerNumber player number

public long PlayerID player id
Public Member Functions

public Slot(System.Windows.Forms.CheckBox ChkWarnings,
 System.Windows.Forms.Label CINumber,
 System.Windows.Forms.Label CIName,
 System.Windows.Forms.Label CONumber,
 System.Windows.Forms.Label COName,
 System.Windows.Forms.Label RestTime,
 System.Windows.Forms.Label RestTimeRemaining,
 System.Windows.Forms.Label ActiveTime,
 System.Windows.Forms.Label ActiveTimeRemaining,
 System.Windows.Forms.Button InOut,
 System.Windows.Forms.Panel panel)
 Create a slot

public void LoadSlot(STATe.Collections.Player player)
 load a player into a slod

public void SetIsResting(bool B)
 is a player resting (active players are in top slots)

public void SetCheckedIn(bool B)
 set a player as active

public void SetCheckInPending(bool B)
 set a player to waiting to be checked in

public void SetPlayedAtLeastOnceThisPeriod(bool B)
 player has played this period

public void SetCheckOutPending(bool B)
 player is waiting to be checked out

public void SetPlayedWhenClockLastStopped(bool B)
 set a player played when the clock stopped

public void SetGameTimeCheckedOut(int T)

 record game time player checked out in database

public void SetRealTimeCheckedOut(int T)
 record actual time player checked out

public void SetGameTimeCheckedIn(int T)
 record game time player checked in

public void SetRealTimeCheckedIn(int T)
 record real time player checked in

public System.Windows.Forms.Label CIPlayerNumber()
 return player number player checking in

public System.Windows.Forms.Label COPlayerNumber()
 return player number player checking out

public System.Windows.Forms.Label CIPlayerName()
 return name player checking in

public System.Windows.Forms.Label COPlayerName()
 return name player checing out

public System.Windows.Forms.Label RestTime()
 return rest time for player

public System.Windows.Forms.Label RestTimeRemaining()
 return rest time remaining for player

public System.Windows.Forms.Button ChkInOut()
 check players in or out

public bool IsResting()
 see if player is resting

public bool CheckedIn()
 see if player is checked in

public bool CheckInPending()
 is player waiting to be checked in

public bool CheckOutPending()
 is a player waiting to be checked out

public bool PlayedAtLeastOnceThisPeriod()
 has a player played yet this period

public System.Windows.Forms.Label ActiveTime()
 players active time

public System.Windows.Forms.Label ActiveTimeRemaining()
 players playing time remaining

public bool PlayedWhenClockLastStopped()

when clock is stopped has the player played helps with player is checked in but never
actually plays (sub in and out before clock is started)

public int GameTimeCheckedOut()
 game time a player checks out

public int RealTimeCheckedOut()
 real time player checked out

public int GameTimeCheckedIn()
 game time player checked in

public int RealTimeCheckedIn()

real time player checked in

Private Members
 private STATe.Collections.Player myPlayer; player object

private System.Windows.Forms.Label lCIPlayerNumber; player number checking in

 private System.Windows.Forms.Label lCOPlayerNumber; player number player checking out
 private System.Windows.Forms.Label lCIPlayerName; check in player name
 private System.Windows.Forms.Label lCOPlayerName; checkout player name
 private System.Windows.Forms.Label lRestTime; resting time
 private System.Windows.Forms.Label lRestTimeRemaining; rest time remaining
 private System.Windows.Forms.Button cmdChkInOut; check player in/out
 private bool blnIsResting; player is resting
 private bool blnCheckedIn; player is checked in
 private bool blnCheckInPending; player is waiting to be checked in
 private bool blnCheckOutPending; player is waiting to be checked out
 private bool blnPlayedAtLeastOnceThisPeriod; player played this period
 private System.Windows.Forms.Label ActiveTimeLabel; active time played
 private System.Windows.Forms.Label ActiveTimeRemainingLabel; remaining playing time
 private bool blnPlayedWhenClockLastStopped; played (not sub in sub out)
 private int intGameTimeCheckedOut; game time checked out

private int intRealTimeCheckedOut; real time checked out
 private int intGameTimeCheckedIn; game time checked in

 private int intRealTimeCheckedIn; real time checked in

class GameSearcher
Public Member Functions
public void CheckIPForGame()

public GameSearcher(STATe.Forms.Controls.GameListView glv, IPAddress ip, int port,
thread_end_signal end)
 search for active games

Private Members
 private IPAddress myIP; ip address
 private STATe.Forms.Controls.GameListView myGLV; show available games
 private int myPort; port for game

 private thread_end_signal myEnd; end the thread

class GameBroadcaster

Public Member Functions
public GameBroadcaster(STATe.Collections.Settings.GameSettings info)

 send info about games upon requests

public void RestartBroadcast()

 refresh the info about the game

public void BeginBroadcast(IPAddress ip, int port)

 send the requested information

public void EndBroadcast()

 end the connection

Private Members
private byte[] myGameInfo; buffer

 private System.Net.Sockets.Socket listener listen on socket
 private IPAddress myIP; ip address listen

 private int myPort; port listen
Private Member Functions

 private void OnConnectRequest(IAsyncResult ar)

 accept requests to join listen for more connections

private void NewConnection(Socket sockClient)
 send the game info close the connection

class ipList
Public Members
public int count number of ips in the list
Public Member Functions
public ipList() ip list

public IPAddress this[int x] return specific ip out of list

Private Members
private IPAddress [] myAddresses; ip address

class ipEnumerator
Public Members
public object Current
Public Member Functions
public ipEnumerator(ipList coll)

iterate through ips

public void Reset()

 reset index to beginning

public bool MoveNext()

 move to next index

public System.Collections.IEnumerator GetEnumerator()

 get enumerator works similar to for each

Private Members
private ipList collection; collection of ip addresses

 private int index; index into collection

	Player Statistical GUI
	Overview: The statistical GUI was designed to keep track of

	Player Tracker GUI
	Bench View GUI
	STATe FORMS
	Class AddTeam

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

